changed example
This commit is contained in:
@@ -814,6 +814,7 @@ fn main() {
|
||||
# }
|
||||
# }
|
||||
</code></pre></pre>
|
||||
<h2><a class="header" href="#asyncawait-and-concurrent-futures" id="asyncawait-and-concurrent-futures">Async/Await and concurrent Futures</a></h2>
|
||||
<p>This is the first time we actually see the <code>async/await</code> syntax so let's
|
||||
finish this book by explaining them briefly.</p>
|
||||
<p>Hopefully, the <code>await</code> syntax looks pretty familiar. It has a lot in common
|
||||
@@ -834,11 +835,11 @@ code. For us to actually await multiple futures at the same time we somehow need
|
||||
to <code>spawn</code> them so they're polled once, but does not cause our thread to sleep
|
||||
and wait for them one after one.</p>
|
||||
<p>Our example as it stands now returns this:</p>
|
||||
<pre><code>Future got 1 at time: 1.00.
|
||||
<pre><code class="language-ignore">Future got 1 at time: 1.00.
|
||||
Future got 2 at time: 3.00.
|
||||
</code></pre>
|
||||
<p>If these <code>Futures</code> were executed asynchronously we would expect to see:</p>
|
||||
<pre><code>Future got 1 at time: 1.00.
|
||||
<pre><code class="language-ignore">Future got 1 at time: 1.00.
|
||||
Future got 2 at time: 2.00.
|
||||
</code></pre>
|
||||
<p>To accomplish this we can create the simplest possible <code>spawn</code> function I could
|
||||
@@ -862,7 +863,12 @@ come up with:</p>
|
||||
}
|
||||
</code></pre>
|
||||
<p>Now if we change our code in <code>main</code> to look like this instead.</p>
|
||||
<pre><pre class="playpen"><code class="language-rust">fn main() {
|
||||
<pre><pre class="playpen"><code class="language-rust"># use std::{
|
||||
# future::Future, pin::Pin, sync::{mpsc::{channel, Sender}, Arc, Mutex},
|
||||
# task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
|
||||
# thread::{self, JoinHandle}, time::{Duration, Instant}
|
||||
# };
|
||||
fn main() {
|
||||
let start = Instant::now();
|
||||
let reactor = Reactor::new();
|
||||
let reactor = Arc::new(Mutex::new(reactor));
|
||||
@@ -898,9 +904,174 @@ come up with:</p>
|
||||
block_on(mainfut);
|
||||
reactor.lock().map(|mut r| r.close()).unwrap();
|
||||
}
|
||||
# //// ===== EXECUTOR =====
|
||||
# fn block_on<F: Future>(mut future: F) -> F::Output {
|
||||
# let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
# let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
# let mut cx = Context::from_waker(&waker);
|
||||
# let val = loop {
|
||||
# let pinned = unsafe { Pin::new_unchecked(&mut future) };
|
||||
# match Future::poll(pinned, &mut cx) {
|
||||
# Poll::Ready(val) => break val,
|
||||
# Poll::Pending => thread::park(),
|
||||
# };
|
||||
# };
|
||||
# val
|
||||
# }
|
||||
#
|
||||
# fn spawn<F: Future>(future: F) -> Pin<Box<F>> {
|
||||
# let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
# let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
# let mut cx = Context::from_waker(&waker);
|
||||
# let mut boxed = Box::pin(future);
|
||||
# let _ = Future::poll(boxed.as_mut(), &mut cx);
|
||||
# boxed
|
||||
# }
|
||||
#
|
||||
# // ===== FUTURE IMPLEMENTATION =====
|
||||
# #[derive(Clone)]
|
||||
# struct MyWaker {
|
||||
# thread: thread::Thread,
|
||||
# }
|
||||
#
|
||||
# #[derive(Clone)]
|
||||
# pub struct Task {
|
||||
# id: usize,
|
||||
# reactor: Arc<Mutex<Reactor>>,
|
||||
# data: u64,
|
||||
# is_registered: bool,
|
||||
# }
|
||||
#
|
||||
# fn mywaker_wake(s: &MyWaker) {
|
||||
# let waker_ptr: *const MyWaker = s;
|
||||
# let waker_arc = unsafe {Arc::from_raw(waker_ptr)};
|
||||
# waker_arc.thread.unpark();
|
||||
# }
|
||||
#
|
||||
# fn mywaker_clone(s: &MyWaker) -> RawWaker {
|
||||
# let arc = unsafe { Arc::from_raw(s).clone() };
|
||||
# std::mem::forget(arc.clone()); // increase ref count
|
||||
# RawWaker::new(Arc::into_raw(arc) as *const (), &VTABLE)
|
||||
# }
|
||||
#
|
||||
# const VTABLE: RawWakerVTable = unsafe {
|
||||
# RawWakerVTable::new(
|
||||
# |s| mywaker_clone(&*(s as *const MyWaker)), // clone
|
||||
# |s| mywaker_wake(&*(s as *const MyWaker)), // wake
|
||||
# |s| mywaker_wake(*(s as *const &MyWaker)), // wake by ref
|
||||
# |s| drop(Arc::from_raw(s as *const MyWaker)), // decrease refcount
|
||||
# )
|
||||
# };
|
||||
#
|
||||
# fn waker_into_waker(s: *const MyWaker) -> Waker {
|
||||
# let raw_waker = RawWaker::new(s as *const (), &VTABLE);
|
||||
# unsafe { Waker::from_raw(raw_waker) }
|
||||
# }
|
||||
#
|
||||
# impl Task {
|
||||
# fn new(reactor: Arc<Mutex<Reactor>>, data: u64, id: usize) -> Self {
|
||||
# Task {
|
||||
# id,
|
||||
# reactor,
|
||||
# data,
|
||||
# is_registered: false,
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# impl Future for Task {
|
||||
# type Output = usize;
|
||||
# fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
|
||||
# let mut r = self.reactor.lock().unwrap();
|
||||
# if r.is_ready(self.id) {
|
||||
# Poll::Ready(self.id)
|
||||
# } else if self.is_registered {
|
||||
# Poll::Pending
|
||||
# } else {
|
||||
# r.register(self.data, cx.waker().clone(), self.id);
|
||||
# drop(r);
|
||||
# self.is_registered = true;
|
||||
# Poll::Pending
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# // ===== REACTOR =====
|
||||
# struct Reactor {
|
||||
# dispatcher: Sender<Event>,
|
||||
# handle: Option<JoinHandle<()>>,
|
||||
# readylist: Arc<Mutex<Vec<usize>>>,
|
||||
# }
|
||||
# #[derive(Debug)]
|
||||
# enum Event {
|
||||
# Close,
|
||||
# Simple(Waker, u64, usize),
|
||||
# }
|
||||
#
|
||||
# impl Reactor {
|
||||
# fn new() -> Self {
|
||||
# let (tx, rx) = channel::<Event>();
|
||||
# let readylist = Arc::new(Mutex::new(vec![]));
|
||||
# let rl_clone = readylist.clone();
|
||||
# let mut handles = vec![];
|
||||
# let handle = thread::spawn(move || {
|
||||
# // This simulates some I/O resource
|
||||
# for event in rx {
|
||||
# println!("GOT EVENT: {:?}", event);
|
||||
# let rl_clone = rl_clone.clone();
|
||||
# match event {
|
||||
# Event::Close => break,
|
||||
# Event::Simple(waker, duration, id) => {
|
||||
# let event_handle = thread::spawn(move || {
|
||||
# thread::sleep(Duration::from_secs(duration));
|
||||
# rl_clone.lock().map(|mut rl| rl.push(id)).unwrap();
|
||||
# waker.wake();
|
||||
# });
|
||||
#
|
||||
# handles.push(event_handle);
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# for handle in handles {
|
||||
# handle.join().unwrap();
|
||||
# }
|
||||
# });
|
||||
#
|
||||
# Reactor {
|
||||
# readylist,
|
||||
# dispatcher: tx,
|
||||
# handle: Some(handle),
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# fn register(&mut self, duration: u64, waker: Waker, data: usize) {
|
||||
# self.dispatcher
|
||||
# .send(Event::Simple(waker, duration, data))
|
||||
# .unwrap();
|
||||
# }
|
||||
#
|
||||
# fn close(&mut self) {
|
||||
# self.dispatcher.send(Event::Close).unwrap();
|
||||
# }
|
||||
#
|
||||
# fn is_ready(&self, id_to_check: usize) -> bool {
|
||||
# self.readylist
|
||||
# .lock()
|
||||
# .map(|rl| rl.iter().any(|id| *id == id_to_check))
|
||||
# .unwrap()
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# impl Drop for Reactor {
|
||||
# fn drop(&mut self) {
|
||||
# self.handle.take().map(|h| h.join().unwrap()).unwrap();
|
||||
# }
|
||||
# }
|
||||
</code></pre></pre>
|
||||
<p>Now, if we try to run our example again</p>
|
||||
<p>If you add this code to our example and run it, you'll see:</p>
|
||||
<pre><code>Future got 1 at time: 1.00.
|
||||
<pre><code class="language-ignore">Future got 1 at time: 1.00.
|
||||
Future got 2 at time: 2.00.
|
||||
</code></pre>
|
||||
<p>Exactly as we expected.</p>
|
||||
|
||||
@@ -160,16 +160,9 @@ run it yourself. Have fun!</p>
|
||||
|
||||
fn main() {
|
||||
let start = Instant::now();
|
||||
|
||||
// Many runtimes create a glocal `reactor` we pass it as an argument
|
||||
let reactor = Reactor::new();
|
||||
let reactor = Arc::new(Mutex::new(reactor));
|
||||
|
||||
let future1 = Task::new(reactor.clone(), 1, 1);
|
||||
|
||||
|
||||
|
||||
|
||||
let future2 = Task::new(reactor.clone(), 2, 2);
|
||||
|
||||
let fut1 = async {
|
||||
@@ -185,15 +178,17 @@ fn main() {
|
||||
};
|
||||
|
||||
let mainfut = async {
|
||||
fut1.await;
|
||||
fut2.await;
|
||||
let handle1 = spawn(fut1);
|
||||
let handle2 = spawn(fut2);
|
||||
handle1.await;
|
||||
handle2.await;
|
||||
};
|
||||
|
||||
block_on(mainfut);
|
||||
reactor.lock().map(|mut r| r.close()).unwrap();
|
||||
}
|
||||
|
||||
//// ============================ EXECUTOR ====================================
|
||||
//// ===== EXECUTOR =====
|
||||
fn block_on<F: Future>(mut future: F) -> F::Output {
|
||||
let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
@@ -208,7 +203,16 @@ fn block_on<F: Future>(mut future: F) -> F::Output {
|
||||
val
|
||||
}
|
||||
|
||||
// ====================== FUTURE IMPLEMENTATION ==============================
|
||||
fn spawn<F: Future>(future: F) -> Pin<Box<F>> {
|
||||
let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
let mut cx = Context::from_waker(&waker);
|
||||
let mut boxed = Box::pin(future);
|
||||
let _ = Future::poll(boxed.as_mut(), &mut cx);
|
||||
boxed
|
||||
}
|
||||
|
||||
// ===== FUTURE IMPLEMENTATION =====
|
||||
#[derive(Clone)]
|
||||
struct MyWaker {
|
||||
thread: thread::Thread,
|
||||
@@ -276,7 +280,7 @@ impl Future for Task {
|
||||
}
|
||||
}
|
||||
|
||||
// =============================== REACTOR ===================================
|
||||
// ===== REACTOR =====
|
||||
struct Reactor {
|
||||
dispatcher: Sender<Event>,
|
||||
handle: Option<JoinHandle<()>>,
|
||||
@@ -297,6 +301,7 @@ impl Reactor {
|
||||
let handle = thread::spawn(move || {
|
||||
// This simulates some I/O resource
|
||||
for event in rx {
|
||||
println!("GOT EVENT: {:?}", event);
|
||||
let rl_clone = rl_clone.clone();
|
||||
match event {
|
||||
Event::Close => break,
|
||||
|
||||
208
book/print.html
208
book/print.html
@@ -1811,6 +1811,7 @@ fn main() {
|
||||
# }
|
||||
# }
|
||||
</code></pre></pre>
|
||||
<h2><a class="header" href="#asyncawait-and-concurrent-futures" id="asyncawait-and-concurrent-futures">Async/Await and concurrent Futures</a></h2>
|
||||
<p>This is the first time we actually see the <code>async/await</code> syntax so let's
|
||||
finish this book by explaining them briefly.</p>
|
||||
<p>Hopefully, the <code>await</code> syntax looks pretty familiar. It has a lot in common
|
||||
@@ -1831,11 +1832,11 @@ code. For us to actually await multiple futures at the same time we somehow need
|
||||
to <code>spawn</code> them so they're polled once, but does not cause our thread to sleep
|
||||
and wait for them one after one.</p>
|
||||
<p>Our example as it stands now returns this:</p>
|
||||
<pre><code>Future got 1 at time: 1.00.
|
||||
<pre><code class="language-ignore">Future got 1 at time: 1.00.
|
||||
Future got 2 at time: 3.00.
|
||||
</code></pre>
|
||||
<p>If these <code>Futures</code> were executed asynchronously we would expect to see:</p>
|
||||
<pre><code>Future got 1 at time: 1.00.
|
||||
<pre><code class="language-ignore">Future got 1 at time: 1.00.
|
||||
Future got 2 at time: 2.00.
|
||||
</code></pre>
|
||||
<p>To accomplish this we can create the simplest possible <code>spawn</code> function I could
|
||||
@@ -1859,7 +1860,12 @@ come up with:</p>
|
||||
}
|
||||
</code></pre>
|
||||
<p>Now if we change our code in <code>main</code> to look like this instead.</p>
|
||||
<pre><pre class="playpen"><code class="language-rust">fn main() {
|
||||
<pre><pre class="playpen"><code class="language-rust"># use std::{
|
||||
# future::Future, pin::Pin, sync::{mpsc::{channel, Sender}, Arc, Mutex},
|
||||
# task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
|
||||
# thread::{self, JoinHandle}, time::{Duration, Instant}
|
||||
# };
|
||||
fn main() {
|
||||
let start = Instant::now();
|
||||
let reactor = Reactor::new();
|
||||
let reactor = Arc::new(Mutex::new(reactor));
|
||||
@@ -1895,9 +1901,174 @@ come up with:</p>
|
||||
block_on(mainfut);
|
||||
reactor.lock().map(|mut r| r.close()).unwrap();
|
||||
}
|
||||
# //// ===== EXECUTOR =====
|
||||
# fn block_on<F: Future>(mut future: F) -> F::Output {
|
||||
# let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
# let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
# let mut cx = Context::from_waker(&waker);
|
||||
# let val = loop {
|
||||
# let pinned = unsafe { Pin::new_unchecked(&mut future) };
|
||||
# match Future::poll(pinned, &mut cx) {
|
||||
# Poll::Ready(val) => break val,
|
||||
# Poll::Pending => thread::park(),
|
||||
# };
|
||||
# };
|
||||
# val
|
||||
# }
|
||||
#
|
||||
# fn spawn<F: Future>(future: F) -> Pin<Box<F>> {
|
||||
# let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
# let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
# let mut cx = Context::from_waker(&waker);
|
||||
# let mut boxed = Box::pin(future);
|
||||
# let _ = Future::poll(boxed.as_mut(), &mut cx);
|
||||
# boxed
|
||||
# }
|
||||
#
|
||||
# // ===== FUTURE IMPLEMENTATION =====
|
||||
# #[derive(Clone)]
|
||||
# struct MyWaker {
|
||||
# thread: thread::Thread,
|
||||
# }
|
||||
#
|
||||
# #[derive(Clone)]
|
||||
# pub struct Task {
|
||||
# id: usize,
|
||||
# reactor: Arc<Mutex<Reactor>>,
|
||||
# data: u64,
|
||||
# is_registered: bool,
|
||||
# }
|
||||
#
|
||||
# fn mywaker_wake(s: &MyWaker) {
|
||||
# let waker_ptr: *const MyWaker = s;
|
||||
# let waker_arc = unsafe {Arc::from_raw(waker_ptr)};
|
||||
# waker_arc.thread.unpark();
|
||||
# }
|
||||
#
|
||||
# fn mywaker_clone(s: &MyWaker) -> RawWaker {
|
||||
# let arc = unsafe { Arc::from_raw(s).clone() };
|
||||
# std::mem::forget(arc.clone()); // increase ref count
|
||||
# RawWaker::new(Arc::into_raw(arc) as *const (), &VTABLE)
|
||||
# }
|
||||
#
|
||||
# const VTABLE: RawWakerVTable = unsafe {
|
||||
# RawWakerVTable::new(
|
||||
# |s| mywaker_clone(&*(s as *const MyWaker)), // clone
|
||||
# |s| mywaker_wake(&*(s as *const MyWaker)), // wake
|
||||
# |s| mywaker_wake(*(s as *const &MyWaker)), // wake by ref
|
||||
# |s| drop(Arc::from_raw(s as *const MyWaker)), // decrease refcount
|
||||
# )
|
||||
# };
|
||||
#
|
||||
# fn waker_into_waker(s: *const MyWaker) -> Waker {
|
||||
# let raw_waker = RawWaker::new(s as *const (), &VTABLE);
|
||||
# unsafe { Waker::from_raw(raw_waker) }
|
||||
# }
|
||||
#
|
||||
# impl Task {
|
||||
# fn new(reactor: Arc<Mutex<Reactor>>, data: u64, id: usize) -> Self {
|
||||
# Task {
|
||||
# id,
|
||||
# reactor,
|
||||
# data,
|
||||
# is_registered: false,
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# impl Future for Task {
|
||||
# type Output = usize;
|
||||
# fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
|
||||
# let mut r = self.reactor.lock().unwrap();
|
||||
# if r.is_ready(self.id) {
|
||||
# Poll::Ready(self.id)
|
||||
# } else if self.is_registered {
|
||||
# Poll::Pending
|
||||
# } else {
|
||||
# r.register(self.data, cx.waker().clone(), self.id);
|
||||
# drop(r);
|
||||
# self.is_registered = true;
|
||||
# Poll::Pending
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# // ===== REACTOR =====
|
||||
# struct Reactor {
|
||||
# dispatcher: Sender<Event>,
|
||||
# handle: Option<JoinHandle<()>>,
|
||||
# readylist: Arc<Mutex<Vec<usize>>>,
|
||||
# }
|
||||
# #[derive(Debug)]
|
||||
# enum Event {
|
||||
# Close,
|
||||
# Simple(Waker, u64, usize),
|
||||
# }
|
||||
#
|
||||
# impl Reactor {
|
||||
# fn new() -> Self {
|
||||
# let (tx, rx) = channel::<Event>();
|
||||
# let readylist = Arc::new(Mutex::new(vec![]));
|
||||
# let rl_clone = readylist.clone();
|
||||
# let mut handles = vec![];
|
||||
# let handle = thread::spawn(move || {
|
||||
# // This simulates some I/O resource
|
||||
# for event in rx {
|
||||
# println!("GOT EVENT: {:?}", event);
|
||||
# let rl_clone = rl_clone.clone();
|
||||
# match event {
|
||||
# Event::Close => break,
|
||||
# Event::Simple(waker, duration, id) => {
|
||||
# let event_handle = thread::spawn(move || {
|
||||
# thread::sleep(Duration::from_secs(duration));
|
||||
# rl_clone.lock().map(|mut rl| rl.push(id)).unwrap();
|
||||
# waker.wake();
|
||||
# });
|
||||
#
|
||||
# handles.push(event_handle);
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# for handle in handles {
|
||||
# handle.join().unwrap();
|
||||
# }
|
||||
# });
|
||||
#
|
||||
# Reactor {
|
||||
# readylist,
|
||||
# dispatcher: tx,
|
||||
# handle: Some(handle),
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# fn register(&mut self, duration: u64, waker: Waker, data: usize) {
|
||||
# self.dispatcher
|
||||
# .send(Event::Simple(waker, duration, data))
|
||||
# .unwrap();
|
||||
# }
|
||||
#
|
||||
# fn close(&mut self) {
|
||||
# self.dispatcher.send(Event::Close).unwrap();
|
||||
# }
|
||||
#
|
||||
# fn is_ready(&self, id_to_check: usize) -> bool {
|
||||
# self.readylist
|
||||
# .lock()
|
||||
# .map(|rl| rl.iter().any(|id| *id == id_to_check))
|
||||
# .unwrap()
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# impl Drop for Reactor {
|
||||
# fn drop(&mut self) {
|
||||
# self.handle.take().map(|h| h.join().unwrap()).unwrap();
|
||||
# }
|
||||
# }
|
||||
</code></pre></pre>
|
||||
<p>Now, if we try to run our example again</p>
|
||||
<p>If you add this code to our example and run it, you'll see:</p>
|
||||
<pre><code>Future got 1 at time: 1.00.
|
||||
<pre><code class="language-ignore">Future got 1 at time: 1.00.
|
||||
Future got 2 at time: 2.00.
|
||||
</code></pre>
|
||||
<p>Exactly as we expected.</p>
|
||||
@@ -1919,16 +2090,9 @@ run it yourself. Have fun!</p>
|
||||
|
||||
fn main() {
|
||||
let start = Instant::now();
|
||||
|
||||
// Many runtimes create a glocal `reactor` we pass it as an argument
|
||||
let reactor = Reactor::new();
|
||||
let reactor = Arc::new(Mutex::new(reactor));
|
||||
|
||||
let future1 = Task::new(reactor.clone(), 1, 1);
|
||||
|
||||
|
||||
|
||||
|
||||
let future2 = Task::new(reactor.clone(), 2, 2);
|
||||
|
||||
let fut1 = async {
|
||||
@@ -1944,15 +2108,17 @@ fn main() {
|
||||
};
|
||||
|
||||
let mainfut = async {
|
||||
fut1.await;
|
||||
fut2.await;
|
||||
let handle1 = spawn(fut1);
|
||||
let handle2 = spawn(fut2);
|
||||
handle1.await;
|
||||
handle2.await;
|
||||
};
|
||||
|
||||
block_on(mainfut);
|
||||
reactor.lock().map(|mut r| r.close()).unwrap();
|
||||
}
|
||||
|
||||
//// ============================ EXECUTOR ====================================
|
||||
//// ===== EXECUTOR =====
|
||||
fn block_on<F: Future>(mut future: F) -> F::Output {
|
||||
let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
@@ -1967,7 +2133,16 @@ fn block_on<F: Future>(mut future: F) -> F::Output {
|
||||
val
|
||||
}
|
||||
|
||||
// ====================== FUTURE IMPLEMENTATION ==============================
|
||||
fn spawn<F: Future>(future: F) -> Pin<Box<F>> {
|
||||
let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
let mut cx = Context::from_waker(&waker);
|
||||
let mut boxed = Box::pin(future);
|
||||
let _ = Future::poll(boxed.as_mut(), &mut cx);
|
||||
boxed
|
||||
}
|
||||
|
||||
// ===== FUTURE IMPLEMENTATION =====
|
||||
#[derive(Clone)]
|
||||
struct MyWaker {
|
||||
thread: thread::Thread,
|
||||
@@ -2035,7 +2210,7 @@ impl Future for Task {
|
||||
}
|
||||
}
|
||||
|
||||
// =============================== REACTOR ===================================
|
||||
// ===== REACTOR =====
|
||||
struct Reactor {
|
||||
dispatcher: Sender<Event>,
|
||||
handle: Option<JoinHandle<()>>,
|
||||
@@ -2056,6 +2231,7 @@ impl Reactor {
|
||||
let handle = thread::spawn(move || {
|
||||
// This simulates some I/O resource
|
||||
for event in rx {
|
||||
println!("GOT EVENT: {:?}", event);
|
||||
let rl_clone = rl_clone.clone();
|
||||
match event {
|
||||
Event::Close => break,
|
||||
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -403,7 +403,7 @@ here, just give it some time to run.
|
||||
In the last chapter we have the [whole 200 lines in an editable window](./8_finished_example.md). You can
|
||||
also copy that or edit it right in this book.
|
||||
|
||||
```rust,edition2018
|
||||
```rust, edition2018
|
||||
# use std::{
|
||||
# future::Future, pin::Pin, sync::{mpsc::{channel, Sender}, Arc, Mutex},
|
||||
# task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
|
||||
@@ -456,65 +456,36 @@ fn main() {
|
||||
reactor.lock().map(|mut r| r.close()).unwrap();
|
||||
}
|
||||
|
||||
# // ============================ EXECUTOR ====================================
|
||||
#
|
||||
# // Our executor takes any object which implements the `Future` trait
|
||||
# // ============================= EXECUTOR ====================================
|
||||
# fn block_on<F: Future>(mut future: F) -> F::Output {
|
||||
# // the first thing we do is to construct a `Waker` which we'll pass on to
|
||||
# // the `reactor` so it can wake us up when an event is ready.
|
||||
# let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
# let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
# // The context struct is just a wrapper for a `Waker` object. Maybe in the
|
||||
# // future this will do more, but right now it's just a wrapper.
|
||||
# let mut cx = Context::from_waker(&waker);
|
||||
#
|
||||
# // We poll in a loop, but it's not a busy loop. It will only run when
|
||||
# // an event occurs, or a thread has a "spurious wakeup" (an unexpected wakeup
|
||||
# // that can happen for no good reason).
|
||||
# let val = loop {
|
||||
# // So, since we run this on one thread and run one future to completion
|
||||
# // we can pin the `Future` to the stack. This is unsafe, but saves an
|
||||
# // allocation. We could `Box::pin` it too if we wanted. This is however
|
||||
# // safe since we don't move the `Future` here.
|
||||
# let pinned = unsafe { Pin::new_unchecked(&mut future) };
|
||||
# match Future::poll(pinned, &mut cx) {
|
||||
# // when the Future is ready we're finished
|
||||
# Poll::Ready(val) => break val,
|
||||
# // If we get a `pending` future we just go to sleep...
|
||||
# Poll::Pending => thread::park(),
|
||||
# };
|
||||
# };
|
||||
# val
|
||||
# }
|
||||
#
|
||||
# // ====================== FUTURE IMPLEMENTATION ==============================
|
||||
# fn spawn<F: Future>(future: F) -> Pin<Box<F>> {
|
||||
# let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
# let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
# let mut cx = Context::from_waker(&waker);
|
||||
# let mut boxed = Box::pin(future);
|
||||
# let _ = Future::poll(boxed.as_mut(), &mut cx);
|
||||
# boxed
|
||||
# }
|
||||
#
|
||||
# // This is the definition of our `Waker`. We use a regular thread-handle here.
|
||||
# // It works but it's not a good solution. If one of our `Futures` holds a handle
|
||||
# // to our thread and takes it with it to a different thread the followinc could
|
||||
# // happen:
|
||||
# // 1. Our future calls `unpark` from a different thread
|
||||
# // 2. Our `executor` thinks that data is ready and wakes up and polls the future
|
||||
# // 3. The future is not ready yet but one nanosecond later the `Reactor` gets
|
||||
# // an event and calles `wake()` which also unparks our thread.
|
||||
# // 4. This could all happen before we go to sleep again since these processes
|
||||
# // run in parallel.
|
||||
# // 5. Our reactor has called `wake` but our thread is still sleeping since it was
|
||||
# // awake alredy at that point.
|
||||
# // 6. We're deadlocked and our program stops working
|
||||
# // There are many better soloutions, here are some:
|
||||
# // - Use `std::sync::CondVar`
|
||||
# // - Use [crossbeam::sync::Parker](https://docs.rs/crossbeam/0.7.3/crossbeam/sync/# struct.Parker.html)
|
||||
# // ====================== FUTURE IMPLEMENTATION ==============================
|
||||
# #[derive(Clone)]
|
||||
# struct MyWaker {
|
||||
# thread: thread::Thread,
|
||||
# }
|
||||
#
|
||||
# // This is the definition of our `Future`. It keeps all the information we
|
||||
# // need. This one holds a reference to our `reactor`, that's just to make
|
||||
# // this example as easy as possible. It doesn't need to hold a reference to
|
||||
# // the whole reactor, but it needs to be able to register itself with the
|
||||
# // reactor.
|
||||
# #[derive(Clone)]
|
||||
# pub struct Task {
|
||||
# id: usize,
|
||||
@@ -523,26 +494,18 @@ fn main() {
|
||||
# is_registered: bool,
|
||||
# }
|
||||
#
|
||||
# // These are function definitions we'll use for our waker. Remember the
|
||||
# // "Trait Objects" chapter from the book.
|
||||
# fn mywaker_wake(s: &MyWaker) {
|
||||
# let waker_ptr: *const MyWaker = s;
|
||||
# let waker_arc = unsafe {Arc::from_raw(waker_ptr)};
|
||||
# waker_arc.thread.unpark();
|
||||
# }
|
||||
#
|
||||
# // Since we use an `Arc` cloning is just increasing the refcount on the smart
|
||||
# // pointer.
|
||||
# fn mywaker_clone(s: &MyWaker) -> RawWaker {
|
||||
# let arc = unsafe { Arc::from_raw(s).clone() };
|
||||
# std::mem::forget(arc.clone()); // increase ref count
|
||||
# RawWaker::new(Arc::into_raw(arc) as *const (), &VTABLE)
|
||||
# }
|
||||
#
|
||||
# // This is actually a "helper funtcion" to create a `Waker` vtable. In contrast
|
||||
# // to when we created a `Trait Object` from scratch we don't need to concern
|
||||
# // ourselves with the actual layout of the `vtable` and only provide a fixed
|
||||
# // set of functions
|
||||
# const VTABLE: RawWakerVTable = unsafe {
|
||||
# RawWakerVTable::new(
|
||||
# |s| mywaker_clone(&*(s as *const MyWaker)), // clone
|
||||
@@ -552,8 +515,6 @@ fn main() {
|
||||
# )
|
||||
# };
|
||||
#
|
||||
# // Instead of implementing this on the `MyWaker` oject in `impl Mywaker...` we
|
||||
# // just use this pattern instead since it saves us some lines of code.
|
||||
# fn waker_into_waker(s: *const MyWaker) -> Waker {
|
||||
# let raw_waker = RawWaker::new(s as *const (), &VTABLE);
|
||||
# unsafe { Waker::from_raw(raw_waker) }
|
||||
@@ -570,27 +531,16 @@ fn main() {
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# // This is our `Future` implementation
|
||||
# impl Future for Task {
|
||||
# // The output for this kind of `leaf future` is just an `usize`. For other
|
||||
# // futures this could be something more interesting like a byte stream.
|
||||
# type Output = usize;
|
||||
# fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
|
||||
# let mut r = self.reactor.lock().unwrap();
|
||||
# // we check with the `Reactor` if this future is in its "readylist"
|
||||
# if r.is_ready(self.id) {
|
||||
# // if it is, we return the data. In this case it's just the ID of
|
||||
# // the task.
|
||||
# Poll::Ready(self.id)
|
||||
# } else if self.is_registered {
|
||||
# // If the future is registered alredy, we just return `Pending`
|
||||
# Poll::Pending
|
||||
# } else {
|
||||
# // If we get here, it must be the first time this `Future` is polled
|
||||
# // so we register a task with our `reactor`
|
||||
# r.register(self.data, cx.waker().clone(), self.id);
|
||||
# // oh, we have to drop the lock on our `Mutex` here because we can't
|
||||
# // have a shared and exclusive borrow at the same time
|
||||
# drop(r);
|
||||
# self.is_registered = true;
|
||||
# Poll::Pending
|
||||
@@ -599,20 +549,11 @@ fn main() {
|
||||
# }
|
||||
#
|
||||
# // =============================== REACTOR ===================================
|
||||
# // This is a "fake" reactor. It does no real I/O, but that also makes our
|
||||
# // code possible to run in the book and in the playground
|
||||
# struct Reactor {
|
||||
# // we need some way of registering a Task with the reactor. Normally this
|
||||
# // would be an "interest" in an I/O event
|
||||
# dispatcher: Sender<Event>,
|
||||
# handle: Option<JoinHandle<()>>,
|
||||
# // This is a list of tasks that are ready, which means they should be polled
|
||||
# // for data.
|
||||
# readylist: Arc<Mutex<Vec<usize>>>,
|
||||
# }
|
||||
#
|
||||
# // We just have two kind of events. A timeout event, a "timeout" event called
|
||||
# // `Timeout` and a `Close` event to close down our reactor.
|
||||
# #[derive(Debug)]
|
||||
# enum Event {
|
||||
# Close,
|
||||
@@ -621,35 +562,21 @@ fn main() {
|
||||
#
|
||||
# impl Reactor {
|
||||
# fn new() -> Self {
|
||||
# // The way we register new events with our reactor is using a regular
|
||||
# // channel
|
||||
# let (tx, rx) = channel::<Event>();
|
||||
# let readylist = Arc::new(Mutex::new(vec![]));
|
||||
# let rl_clone = readylist.clone();
|
||||
#
|
||||
# // This `Vec` will hold handles to all threads we spawn so we can
|
||||
# // join them later on and finish our programm in a good manner
|
||||
# let mut handles = vec![];
|
||||
# // This will be the "Reactor thread"
|
||||
# let handle = thread::spawn(move || {
|
||||
# // This simulates some I/O resource
|
||||
# for event in rx {
|
||||
# println!("GOT EVENT: {:?}", event);
|
||||
# let rl_clone = rl_clone.clone();
|
||||
# match event {
|
||||
# // If we get a close event we break out of the loop we're in
|
||||
# Event::Close => break,
|
||||
# Event::Timeout(waker, duration, id) => {
|
||||
#
|
||||
# // When we get an event we simply spawn a new thread...
|
||||
# let event_handle = thread::spawn(move || {
|
||||
# //... which will just sleep for the number of seconds
|
||||
# // we provided when creating the `Task`.
|
||||
# thread::sleep(Duration::from_secs(duration));
|
||||
# // When it's done sleeping we put the ID of this task
|
||||
# // on the "readylist"
|
||||
# rl_clone.lock().map(|mut rl| rl.push(id)).unwrap();
|
||||
# // Then we call `wake` which will wake up our
|
||||
# // executor and start polling the futures
|
||||
# waker.wake();
|
||||
# });
|
||||
#
|
||||
@@ -658,9 +585,6 @@ fn main() {
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# // When we exit the Reactor we first join all the handles on
|
||||
# // the child threads we've spawned so we catch any panics and
|
||||
# // release all resources.
|
||||
# for handle in handles {
|
||||
# handle.join().unwrap();
|
||||
# }
|
||||
@@ -674,8 +598,6 @@ fn main() {
|
||||
# }
|
||||
#
|
||||
# fn register(&mut self, duration: u64, waker: Waker, data: usize) {
|
||||
# // registering an event is as simple as sending an `Event` through
|
||||
# // the channel.
|
||||
# self.dispatcher
|
||||
# .send(Event::Timeout(waker, duration, data))
|
||||
# .unwrap();
|
||||
@@ -685,9 +607,6 @@ fn main() {
|
||||
# self.dispatcher.send(Event::Close).unwrap();
|
||||
# }
|
||||
#
|
||||
# // We need a way to check if any event's are ready. This will simply
|
||||
# // look through the "readylist" for an event macthing the ID we want to
|
||||
# // check for.
|
||||
# fn is_ready(&self, id_to_check: usize) -> bool {
|
||||
# self.readylist
|
||||
# .lock()
|
||||
@@ -696,10 +615,6 @@ fn main() {
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# // When our `Reactor` is dropped we join the reactor thread with the thread
|
||||
# // owning our `Reactor` so we catch any panics and release all resources.
|
||||
# // It's not needed for this to work, but it really is a best practice to join
|
||||
# // all threads you spawn.
|
||||
# impl Drop for Reactor {
|
||||
# fn drop(&mut self) {
|
||||
# self.handle.take().map(|h| h.join().unwrap()).unwrap();
|
||||
@@ -707,6 +622,8 @@ fn main() {
|
||||
# }
|
||||
```
|
||||
|
||||
## Async/Await and concurrent Futures
|
||||
|
||||
This is the first time we actually see the `async/await` syntax so let's
|
||||
finish this book by explaining them briefly.
|
||||
|
||||
@@ -772,7 +689,12 @@ fn spawn<F: Future>(future: F) -> Pin<Box<F>> {
|
||||
|
||||
Now if we change our code in `main` to look like this instead.
|
||||
|
||||
```rust, ignore, noplaypen
|
||||
```rust, edition2018
|
||||
# use std::{
|
||||
# future::Future, pin::Pin, sync::{mpsc::{channel, Sender}, Arc, Mutex},
|
||||
# task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
|
||||
# thread::{self, JoinHandle}, time::{Duration, Instant}
|
||||
# };
|
||||
fn main() {
|
||||
let start = Instant::now();
|
||||
let reactor = Reactor::new();
|
||||
@@ -809,15 +731,182 @@ fn main() {
|
||||
block_on(mainfut);
|
||||
reactor.lock().map(|mut r| r.close()).unwrap();
|
||||
}
|
||||
# // ============================= EXECUTOR ====================================
|
||||
# fn block_on<F: Future>(mut future: F) -> F::Output {
|
||||
# let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
# let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
# let mut cx = Context::from_waker(&waker);
|
||||
# let val = loop {
|
||||
# let pinned = unsafe { Pin::new_unchecked(&mut future) };
|
||||
# match Future::poll(pinned, &mut cx) {
|
||||
# Poll::Ready(val) => break val,
|
||||
# Poll::Pending => thread::park(),
|
||||
# };
|
||||
# };
|
||||
# val
|
||||
# }
|
||||
#
|
||||
# fn spawn<F: Future>(future: F) -> Pin<Box<F>> {
|
||||
# let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
# let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
# let mut cx = Context::from_waker(&waker);
|
||||
# let mut boxed = Box::pin(future);
|
||||
# let _ = Future::poll(boxed.as_mut(), &mut cx);
|
||||
# boxed
|
||||
# }
|
||||
#
|
||||
# // ====================== FUTURE IMPLEMENTATION ==============================
|
||||
# #[derive(Clone)]
|
||||
# struct MyWaker {
|
||||
# thread: thread::Thread,
|
||||
# }
|
||||
#
|
||||
# #[derive(Clone)]
|
||||
# pub struct Task {
|
||||
# id: usize,
|
||||
# reactor: Arc<Mutex<Reactor>>,
|
||||
# data: u64,
|
||||
# is_registered: bool,
|
||||
# }
|
||||
#
|
||||
# fn mywaker_wake(s: &MyWaker) {
|
||||
# let waker_ptr: *const MyWaker = s;
|
||||
# let waker_arc = unsafe {Arc::from_raw(waker_ptr)};
|
||||
# waker_arc.thread.unpark();
|
||||
# }
|
||||
#
|
||||
# fn mywaker_clone(s: &MyWaker) -> RawWaker {
|
||||
# let arc = unsafe { Arc::from_raw(s).clone() };
|
||||
# std::mem::forget(arc.clone()); // increase ref count
|
||||
# RawWaker::new(Arc::into_raw(arc) as *const (), &VTABLE)
|
||||
# }
|
||||
#
|
||||
# const VTABLE: RawWakerVTable = unsafe {
|
||||
# RawWakerVTable::new(
|
||||
# |s| mywaker_clone(&*(s as *const MyWaker)), // clone
|
||||
# |s| mywaker_wake(&*(s as *const MyWaker)), // wake
|
||||
# |s| mywaker_wake(*(s as *const &MyWaker)), // wake by ref
|
||||
# |s| drop(Arc::from_raw(s as *const MyWaker)), // decrease refcount
|
||||
# )
|
||||
# };
|
||||
#
|
||||
# fn waker_into_waker(s: *const MyWaker) -> Waker {
|
||||
# let raw_waker = RawWaker::new(s as *const (), &VTABLE);
|
||||
# unsafe { Waker::from_raw(raw_waker) }
|
||||
# }
|
||||
#
|
||||
# impl Task {
|
||||
# fn new(reactor: Arc<Mutex<Reactor>>, data: u64, id: usize) -> Self {
|
||||
# Task {
|
||||
# id,
|
||||
# reactor,
|
||||
# data,
|
||||
# is_registered: false,
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# impl Future for Task {
|
||||
# type Output = usize;
|
||||
# fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
|
||||
# let mut r = self.reactor.lock().unwrap();
|
||||
# if r.is_ready(self.id) {
|
||||
# Poll::Ready(self.id)
|
||||
# } else if self.is_registered {
|
||||
# Poll::Pending
|
||||
# } else {
|
||||
# r.register(self.data, cx.waker().clone(), self.id);
|
||||
# drop(r);
|
||||
# self.is_registered = true;
|
||||
# Poll::Pending
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# // =============================== REACTOR ===================================
|
||||
# struct Reactor {
|
||||
# dispatcher: Sender<Event>,
|
||||
# handle: Option<JoinHandle<()>>,
|
||||
# readylist: Arc<Mutex<Vec<usize>>>,
|
||||
# }
|
||||
# #[derive(Debug)]
|
||||
# enum Event {
|
||||
# Close,
|
||||
# Timeout(Waker, u64, usize),
|
||||
# }
|
||||
#
|
||||
# impl Reactor {
|
||||
# fn new() -> Self {
|
||||
# let (tx, rx) = channel::<Event>();
|
||||
# let readylist = Arc::new(Mutex::new(vec![]));
|
||||
# let rl_clone = readylist.clone();
|
||||
# let mut handles = vec![];
|
||||
# let handle = thread::spawn(move || {
|
||||
# // This simulates some I/O resource
|
||||
# for event in rx {
|
||||
# println!("GOT EVENT: {:?}", event);
|
||||
# let rl_clone = rl_clone.clone();
|
||||
# match event {
|
||||
# Event::Close => break,
|
||||
# Event::Timeout(waker, duration, id) => {
|
||||
# let event_handle = thread::spawn(move || {
|
||||
# thread::sleep(Duration::from_secs(duration));
|
||||
# rl_clone.lock().map(|mut rl| rl.push(id)).unwrap();
|
||||
# waker.wake();
|
||||
# });
|
||||
#
|
||||
# handles.push(event_handle);
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# for handle in handles {
|
||||
# handle.join().unwrap();
|
||||
# }
|
||||
# });
|
||||
#
|
||||
# Reactor {
|
||||
# readylist,
|
||||
# dispatcher: tx,
|
||||
# handle: Some(handle),
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# fn register(&mut self, duration: u64, waker: Waker, data: usize) {
|
||||
# self.dispatcher
|
||||
# .send(Event::Timeout(waker, duration, data))
|
||||
# .unwrap();
|
||||
# }
|
||||
#
|
||||
# fn close(&mut self) {
|
||||
# self.dispatcher.send(Event::Close).unwrap();
|
||||
# }
|
||||
#
|
||||
# fn is_ready(&self, id_to_check: usize) -> bool {
|
||||
# self.readylist
|
||||
# .lock()
|
||||
# .map(|rl| rl.iter().any(|id| *id == id_to_check))
|
||||
# .unwrap()
|
||||
# }
|
||||
# }
|
||||
#
|
||||
# impl Drop for Reactor {
|
||||
# fn drop(&mut self) {
|
||||
# self.handle.take().map(|h| h.join().unwrap()).unwrap();
|
||||
# }
|
||||
# }
|
||||
```
|
||||
|
||||
|
||||
Now, if we try to run our example again
|
||||
|
||||
|
||||
If you add this code to our example and run it, you'll see:
|
||||
|
||||
```ignore
|
||||
Future got 1 at time: 1.00.
|
||||
Future got 2 at time: 2.00.
|
||||
```
|
||||
|
||||
Exactly as we expected.
|
||||
|
||||
Now this `spawn` method is not very sophisticated but it explains the concept.
|
||||
|
||||
@@ -13,16 +13,9 @@ use std::{
|
||||
|
||||
fn main() {
|
||||
let start = Instant::now();
|
||||
|
||||
// Many runtimes create a glocal `reactor` we pass it as an argument
|
||||
let reactor = Reactor::new();
|
||||
let reactor = Arc::new(Mutex::new(reactor));
|
||||
|
||||
let future1 = Task::new(reactor.clone(), 1, 1);
|
||||
|
||||
|
||||
|
||||
|
||||
let future2 = Task::new(reactor.clone(), 2, 2);
|
||||
|
||||
let fut1 = async {
|
||||
@@ -38,15 +31,17 @@ fn main() {
|
||||
};
|
||||
|
||||
let mainfut = async {
|
||||
fut1.await;
|
||||
fut2.await;
|
||||
let handle1 = spawn(fut1);
|
||||
let handle2 = spawn(fut2);
|
||||
handle1.await;
|
||||
handle2.await;
|
||||
};
|
||||
|
||||
block_on(mainfut);
|
||||
reactor.lock().map(|mut r| r.close()).unwrap();
|
||||
}
|
||||
|
||||
//// ============================ EXECUTOR ====================================
|
||||
// ====================== FUTURE IMPLEMENTATION ==============================
|
||||
fn block_on<F: Future>(mut future: F) -> F::Output {
|
||||
let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
@@ -61,6 +56,15 @@ fn block_on<F: Future>(mut future: F) -> F::Output {
|
||||
val
|
||||
}
|
||||
|
||||
fn spawn<F: Future>(future: F) -> Pin<Box<F>> {
|
||||
let mywaker = Arc::new(MyWaker{ thread: thread::current() });
|
||||
let waker = waker_into_waker(Arc::into_raw(mywaker));
|
||||
let mut cx = Context::from_waker(&waker);
|
||||
let mut boxed = Box::pin(future);
|
||||
let _ = Future::poll(boxed.as_mut(), &mut cx);
|
||||
boxed
|
||||
}
|
||||
|
||||
// ====================== FUTURE IMPLEMENTATION ==============================
|
||||
#[derive(Clone)]
|
||||
struct MyWaker {
|
||||
@@ -150,6 +154,7 @@ impl Reactor {
|
||||
let handle = thread::spawn(move || {
|
||||
// This simulates some I/O resource
|
||||
for event in rx {
|
||||
println!("GOT EVENT: {:?}", event);
|
||||
let rl_clone = rl_clone.clone();
|
||||
match event {
|
||||
Event::Close => break,
|
||||
|
||||
Reference in New Issue
Block a user