several improvements, see #2 for more details

This commit is contained in:
Carl Fredrik Samson
2020-04-10 20:26:41 +02:00
parent 08cda06ade
commit 32bedb934c
22 changed files with 2236 additions and 2356 deletions

View File

@@ -23,9 +23,9 @@ Let's start off by getting all our imports right away so you can follow along
```rust, noplaypen, ignore
use std::{
future::Future, pin::Pin, sync::{mpsc::{channel, Sender}, Arc, Mutex},
future::Future, pin::Pin, sync::{ mpsc::{channel, Sender}, Arc, Mutex,},
task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
thread::{self, JoinHandle}, time::{Duration, Instant}
thread::{self, JoinHandle}, time::{Duration, Instant}, collections::HashMap
};
```
@@ -131,9 +131,8 @@ struct MyWaker {
#[derive(Clone)]
pub struct Task {
id: usize,
reactor: Arc<Mutex<Reactor>>,
reactor: Arc<Mutex<Box<Reactor>>>,
data: u64,
is_registered: bool,
}
// These are function definitions we'll use for our waker. Remember the
@@ -173,48 +172,57 @@ fn waker_into_waker(s: *const MyWaker) -> Waker {
}
impl Task {
fn new(reactor: Arc<Mutex<Reactor>>, data: u64, id: usize) -> Self {
Task {
id,
reactor,
data,
is_registered: false,
}
fn new(reactor: Arc<Mutex<Box<Reactor>>>, data: u64, id: usize) -> Self {
Task { id, reactor, data }
}
}
// This is our `Future` implementation
impl Future for Task {
// The output for our kind of `leaf future` is just an `usize`. For other
// futures this could be something more interesting like a byte array.
type Output = usize;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// Poll is the what drives the state machine forward and it's the only
// method we'll need to call to drive futures to completion.
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// We need to get access the reactor in our `poll` method so we acquire
// a lock on that.
let mut r = self.reactor.lock().unwrap();
// we check with the `Reactor` if this future is in its "readylist"
// i.e. if it's `Ready`
// First we check if the task is marked as ready
if r.is_ready(self.id) {
// if it is, we return the data. In this case it's just the ID of
// the task since this is just a very simple example.
// If it's ready we set its state to `Finished`
*r.tasks.get_mut(&self.id).unwrap() = TaskState::Finished;
Poll::Ready(self.id)
} else if self.is_registered {
// If it isn't finished we check the map we have stored in our Reactor
// over id's we have registered and see if it's there
} else if r.tasks.contains_key(&self.id) {
// If the future is registered alredy, we just return `Pending`
// This is important. The docs says that on multiple calls to poll,
// only the Waker from the Context passed to the most recent call
// should be scheduled to receive a wakeup. That's why we insert
// this waker into the map (which will return the old one which will
// get dropped) before we return `Pending`.
r.tasks.insert(self.id, TaskState::NotReady(cx.waker().clone()));
Poll::Pending
} else {
// If we get here, it must be the first time this `Future` is polled
// so we register a task with our `reactor`
// If it's not ready, and not in the map it's a new task so we
// register that with the Reactor and return `Pending`
r.register(self.data, cx.waker().clone(), self.id);
// oh, we have to drop the lock on our `Mutex` here because we can't
// have a shared and exclusive borrow at the same time
drop(r);
self.is_registered = true;
Poll::Pending
}
// Note that we're holding a lock on the `Mutex` which protects the
// Reactor all the way until the end of this scope. This means that
// even if our task were to complete immidiately, it will not be
// able to call `wake` while we're in our `Poll` method.
// Since we can make this guarantee, it's now the Executors job to
// handle this possible race condition where `Wake` is called after
// `poll` but before our thread goes to sleep.
}
}
```
@@ -303,6 +311,15 @@ for the sake of this example.
**Our Reactor will look like this:**
```rust, noplaypen, ignore
// This is a "fake" reactor. It does no real I/O, but that also makes our
// code possible to run in the book and in the playground
// The different states a task can have in this Reactor
enum TaskState {
Ready,
NotReady(Waker),
Finished,
}
// This is a "fake" reactor. It does no real I/O, but that also makes our
// code possible to run in the book and in the playground
struct Reactor {
@@ -312,106 +329,118 @@ struct Reactor {
dispatcher: Sender<Event>,
handle: Option<JoinHandle<()>>,
// This is a list of tasks that are ready, which means they should be polled
// for data.
readylist: Arc<Mutex<Vec<usize>>>,
// This is a list of tasks
tasks: HashMap<usize, TaskState>,
}
// We just have two kind of events. An event called `Timeout`
// and a `Close` event to close down our reactor.
// This represents the Events we can send to our reactor thread. In this
// example it's only a Timeout or a Close event.
#[derive(Debug)]
enum Event {
Close,
Timeout(Waker, u64, usize),
Timeout(u64, usize),
}
impl Reactor {
fn new() -> Self {
// The way we register new events with our reactor is using a regular
// channel
// We choose to return an atomic reference counted, mutex protected, heap
// allocated `Reactor`. Just to make it easy to explain... No, the reason
// we do this is:
//
// 1. We know that only thread-safe reactors will be created.
// 2. By heap allocating it we can obtain a reference to a stable address
// that's not dependent on the stack frame of the function that called `new`
fn new() -> Arc<Mutex<Box<Self>>> {
let (tx, rx) = channel::<Event>();
let readylist = Arc::new(Mutex::new(vec![]));
let rl_clone = readylist.clone();
let reactor = Arc::new(Mutex::new(Box::new(Reactor {
dispatcher: tx,
handle: None,
tasks: HashMap::new(),
})));
// Notice that we'll need to use `weak` reference here. If we don't,
// our `Reactor` will not get `dropped` when our main thread is finished
// since we're holding internal references to it.
// This `Vec` will hold handles to all the threads we spawn so we can
// join them later on and finish our programm in a good manner
let mut handles = vec![];
// Since we're collecting all `JoinHandles` from the threads we spawn
// and make sure to join them we know that `Reactor` will be alive
// longer than any reference held by the threads we spawn here.
let reactor_clone = Arc::downgrade(&reactor);
// This will be the "Reactor thread"
// This will be our Reactor-thread. The Reactor-thread will in our case
// just spawn new threads which will serve as timers for us.
let handle = thread::spawn(move || {
let mut handles = vec![];
// This simulates some I/O resource
for event in rx {
let rl_clone = rl_clone.clone();
println!("REACTOR: {:?}", event);
let reactor = reactor_clone.clone();
match event {
// If we get a close event we break out of the loop we're in
Event::Close => break,
Event::Timeout(waker, duration, id) => {
Event::Timeout(duration, id) => {
// When we get an event we simply spawn a new thread
// which will simulate some I/O resource...
// We spawn a new thread that will serve as a timer
// and will call `wake` on the correct `Waker` once
// it's done.
let event_handle = thread::spawn(move || {
//... by sleeping for the number of seconds
// we provided when creating the `Task`.
thread::sleep(Duration::from_secs(duration));
// When it's done sleeping we put the ID of this task
// on the "readylist"
rl_clone.lock().map(|mut rl| rl.push(id)).unwrap();
// Then we call `wake` which will wake up our
// executor and start polling the futures
waker.wake();
let reactor = reactor.upgrade().unwrap();
reactor.lock().map(|mut r| r.wake(id)).unwrap();
});
handles.push(event_handle);
}
}
}
// When we exit the Reactor we first join all the handles on
// the child threads we've spawned so we catch any panics and
// release any resources.
for handle in handles {
handle.join().unwrap();
}
// This is important for us since we need to know that these
// threads don't live longer than our Reactor-thread. Our
// Reactor-thread will be joined when `Reactor` gets dropped.
handles.into_iter().for_each(|handle| handle.join().unwrap());
});
reactor.lock().map(|mut r| r.handle = Some(handle)).unwrap();
reactor
}
Reactor {
readylist,
dispatcher: tx,
handle: Some(handle),
// The wake function will call wake on the waker for the task with the
// corresponding id.
fn wake(&mut self, id: usize) {
self.tasks.get_mut(&id).map(|state| {
// No matter what state the task was in we can safely set it
// to ready at this point. This lets us get ownership over the
// the data that was there before we replaced it.
match mem::replace(state, TaskState::Ready) {
TaskState::NotReady(waker) => waker.wake(),
TaskState::Finished => panic!("Called 'wake' twice on task: {}", id),
_ => unreachable!()
}
}).unwrap();
}
// Register a new task with the reactor. In this particular example
// we panic if a task with the same id get's registered twice
fn register(&mut self, duration: u64, waker: Waker, id: usize) {
if self.tasks.insert(id, TaskState::NotReady(waker)).is_some() {
panic!("Tried to insert a task with id: '{}', twice!", id);
}
self.dispatcher.send(Event::Timeout(duration, id)).unwrap();
}
fn register(&mut self, duration: u64, waker: Waker, data: usize) {
// registering an event is as simple as sending an `Event` through
// the channel.
self.dispatcher
.send(Event::Timeout(waker, duration, data))
.unwrap();
}
// We send a close event to the reactor so it closes down our reactor-thread
fn close(&mut self) {
self.dispatcher.send(Event::Close).unwrap();
}
// We need a way to check if any event's are ready. This will simply
// look through the "readylist" for an event macthing the ID we want to
// check for.
fn is_ready(&self, id_to_check: usize) -> bool {
self.readylist
.lock()
.map(|rl| rl.iter().any(|id| *id == id_to_check))
.unwrap()
// We simply checks if a task with this id is in the state `TaskState::Ready`
fn is_ready(&self, id: usize) -> bool {
self.tasks.get(&id).map(|state| match state {
TaskState::Ready => true,
_ => false,
}).unwrap_or(false)
}
}
// When our `Reactor` is dropped we join the reactor thread with the thread
// owning our `Reactor` so we catch any panics and release all resources.
// It's not needed for this to work, but it really is a best practice to join
// all threads you spawn.
impl Drop for Reactor {
fn drop(&mut self) {
self.handle.take().map(|h| h.join().unwrap()).unwrap();
@@ -430,9 +459,9 @@ which you can edit and change the way you like.
```rust, edition2018
# use std::{
# future::Future, pin::Pin, sync::{mpsc::{channel, Sender}, Arc, Mutex},
# task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
# thread::{self, JoinHandle}, time::{Duration, Instant}
# future::Future, pin::Pin, sync::{ mpsc::{channel, Sender}, Arc, Mutex,},
# task::{Context, Poll, RawWaker, RawWakerVTable, Waker}, mem,
# thread::{self, JoinHandle}, time::{Duration, Instant}, collections::HashMap
# };
#
fn main() {
@@ -441,10 +470,6 @@ fn main() {
// Many runtimes create a glocal `reactor` we pass it as an argument
let reactor = Reactor::new();
// Since we'll share this between threads we wrap it in a
// atmically-refcounted- mutex.
let reactor = Arc::new(Mutex::new(reactor));
// We create two tasks:
// - first parameter is the `reactor`
@@ -482,15 +507,18 @@ fn main() {
// ends nicely.
reactor.lock().map(|mut r| r.close()).unwrap();
}
# // ============================= EXECUTOR ====================================
# fn block_on<F: Future>(mut future: F) -> F::Output {
# let mywaker = Arc::new(MyWaker{ thread: thread::current() });
# let mywaker = Arc::new(MyWaker {
# thread: thread::current(),
# });
# let waker = waker_into_waker(Arc::into_raw(mywaker));
# let mut cx = Context::from_waker(&waker);
#
# // SAFETY: we shadow `future` so it can't be accessed again.
# let mut future = unsafe { Pin::new_unchecked(&mut future) };
# let val = loop {
# let pinned = unsafe { Pin::new_unchecked(&mut future) };
# match Future::poll(pinned, &mut cx) {
# match Future::poll(future.as_mut(), &mut cx) {
# Poll::Ready(val) => break val,
# Poll::Pending => thread::park(),
# };
@@ -507,29 +535,28 @@ fn main() {
# #[derive(Clone)]
# pub struct Task {
# id: usize,
# reactor: Arc<Mutex<Reactor>>,
# reactor: Arc<Mutex<Box<Reactor>>>,
# data: u64,
# is_registered: bool,
# }
#
# fn mywaker_wake(s: &MyWaker) {
# let waker_ptr: *const MyWaker = s;
# let waker_arc = unsafe {Arc::from_raw(waker_ptr)};
# let waker_arc = unsafe { Arc::from_raw(waker_ptr) };
# waker_arc.thread.unpark();
# }
#
# fn mywaker_clone(s: &MyWaker) -> RawWaker {
# let arc = unsafe { Arc::from_raw(s).clone() };
# let arc = unsafe { Arc::from_raw(s) };
# std::mem::forget(arc.clone()); // increase ref count
# RawWaker::new(Arc::into_raw(arc) as *const (), &VTABLE)
# }
#
# const VTABLE: RawWakerVTable = unsafe {
# RawWakerVTable::new(
# |s| mywaker_clone(&*(s as *const MyWaker)), // clone
# |s| mywaker_wake(&*(s as *const MyWaker)), // wake
# |s| mywaker_wake(*(s as *const &MyWaker)), // wake by ref
# |s| drop(Arc::from_raw(s as *const MyWaker)), // decrease refcount
# |s| mywaker_clone(&*(s as *const MyWaker)), // clone
# |s| mywaker_wake(&*(s as *const MyWaker)), // wake
# |s| mywaker_wake(*(s as *const &MyWaker)), // wake by ref
# |s| drop(Arc::from_raw(s as *const MyWaker)), // decrease refcount
# )
# };
#
@@ -539,97 +566,106 @@ fn main() {
# }
#
# impl Task {
# fn new(reactor: Arc<Mutex<Reactor>>, data: u64, id: usize) -> Self {
# Task {
# id,
# reactor,
# data,
# is_registered: false,
# }
# fn new(reactor: Arc<Mutex<Box<Reactor>>>, data: u64, id: usize) -> Self {
# Task { id, reactor, data }
# }
# }
#
# impl Future for Task {
# type Output = usize;
# fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
# fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
# let mut r = self.reactor.lock().unwrap();
# if r.is_ready(self.id) {
# *r.tasks.get_mut(&self.id).unwrap() = TaskState::Finished;
# Poll::Ready(self.id)
# } else if self.is_registered {
# } else if r.tasks.contains_key(&self.id) {
# r.tasks.insert(self.id, TaskState::NotReady(cx.waker().clone()));
# Poll::Pending
# } else {
# r.register(self.data, cx.waker().clone(), self.id);
# drop(r);
# self.is_registered = true;
# Poll::Pending
# }
# }
# }
#
# // =============================== REACTOR ===================================
# enum TaskState {
# Ready,
# NotReady(Waker),
# Finished,
# }
# struct Reactor {
# dispatcher: Sender<Event>,
# handle: Option<JoinHandle<()>>,
# readylist: Arc<Mutex<Vec<usize>>>,
# tasks: HashMap<usize, TaskState>,
# }
#
# #[derive(Debug)]
# enum Event {
# Close,
# Timeout(Waker, u64, usize),
# Timeout(u64, usize),
# }
#
# impl Reactor {
# fn new() -> Self {
# fn new() -> Arc<Mutex<Box<Self>>> {
# let (tx, rx) = channel::<Event>();
# let readylist = Arc::new(Mutex::new(vec![]));
# let rl_clone = readylist.clone();
# let mut handles = vec![];
# let reactor = Arc::new(Mutex::new(Box::new(Reactor {
# dispatcher: tx,
# handle: None,
# tasks: HashMap::new(),
# })));
#
# let reactor_clone = Arc::downgrade(&reactor);
# let handle = thread::spawn(move || {
# let mut handles = vec![];
# // This simulates some I/O resource
# for event in rx {
# println!("REACTOR: {:?}", event);
# let rl_clone = rl_clone.clone();
# let reactor = reactor_clone.clone();
# match event {
# Event::Close => break,
# Event::Timeout(waker, duration, id) => {
# Event::Timeout(duration, id) => {
# let event_handle = thread::spawn(move || {
# thread::sleep(Duration::from_secs(duration));
# rl_clone.lock().map(|mut rl| rl.push(id)).unwrap();
# waker.wake();
# let reactor = reactor.upgrade().unwrap();
# reactor.lock().map(|mut r| r.wake(id)).unwrap();
# });
#
# handles.push(event_handle);
# }
# }
# }
#
# for handle in handles {
# handle.join().unwrap();
# }
# handles.into_iter().for_each(|handle| handle.join().unwrap());
# });
#
# Reactor {
# readylist,
# dispatcher: tx,
# handle: Some(handle),
# }
# reactor.lock().map(|mut r| r.handle = Some(handle)).unwrap();
# reactor
# }
#
# fn register(&mut self, duration: u64, waker: Waker, data: usize) {
# self.dispatcher
# .send(Event::Timeout(waker, duration, data))
# .unwrap();
# fn wake(&mut self, id: usize) {
# self.tasks.get_mut(&id).map(|state| {
# match mem::replace(state, TaskState::Ready) {
# TaskState::NotReady(waker) => waker.wake(),
# TaskState::Finished => panic!("Called 'wake' twice on task: {}", id),
# _ => unreachable!()
# }
# }).unwrap();
# }
#
# fn register(&mut self, duration: u64, waker: Waker, id: usize) {
# if self.tasks.insert(id, TaskState::NotReady(waker)).is_some() {
# panic!("Tried to insert a task with id: '{}', twice!", id);
# }
# self.dispatcher.send(Event::Timeout(duration, id)).unwrap();
# }
#
# fn close(&mut self) {
# self.dispatcher.send(Event::Close).unwrap();
# }
#
# fn is_ready(&self, id_to_check: usize) -> bool {
# self.readylist
# .lock()
# .map(|rl| rl.iter().any(|id| *id == id_to_check))
# .unwrap()
# fn is_ready(&self, id: usize) -> bool {
# self.tasks.get(&id).map(|state| match state {
# TaskState::Ready => true,
# _ => false,
# }).unwrap_or(false)
# }
# }
#