use std::fs; use std::fs::File; use std::io::{Read, Write}; use std::path::PathBuf; use std::time::Instant; use clap::Args; use flate2::Compression; use rsa::Pkcs1v15Encrypt; use rust_util::{debugging, failure, iff, information, opt_result, simple_error, success, XResult}; use rust_util::util_time::UnixEpochTime; use crate::{consts, crypto_simple, util, util_enc_file, util_p256, util_p384, util_x25519}; use crate::compress::GzStreamEncoder; use crate::config::{TinyEncryptConfig, TinyEncryptConfigEnvelop}; use crate::consts::{ ENC_AES256_GCM_P256, ENC_AES256_GCM_P384, ENC_AES256_GCM_X25519, SALT_COMMENT, TINY_ENC_CONFIG_FILE, TINY_ENC_FILE_EXT, }; use crate::crypto_cryptor::Cryptor; use crate::crypto_rsa::parse_spki; use crate::spec::{ EncEncryptedMeta, EncMetadata, TINY_ENCRYPT_VERSION_10, TinyEncryptEnvelop, TinyEncryptEnvelopType, TinyEncryptMeta, }; use crate::util_progress::Progress; use crate::wrap_key::{WrapKey, WrapKeyHeader}; #[derive(Debug, Args)] pub struct CmdEncrypt { /// Files need to be decrypted pub paths: Vec, /// Plaintext comment #[arg(long, short = 'c')] pub comment: Option, /// Encrypted comment #[arg(long, short = 'C')] pub encrypted_comment: Option, /// Encryption profile (use default when --key-filter is assigned) #[arg(long, short = 'p')] pub profile: Option, /// Encryption key filter (key_id or type:TYPE(e.g. ecdh, pgp, ecdh-p384, pgp-ed25519), multiple joined by ',', ALL for all) #[arg(long, short = 'k')] pub key_filter: Option, /// Compress before encrypt #[arg(long, short = 'x')] pub compress: bool, /// Compress level (from 0[none], 1[fast] .. 6[default] .. to 9[best]) #[arg(long, short = 'L')] pub compress_level: Option, /// Compatible with 1.0 (requires assign --disable-compress-meta) #[arg(long, short = '1')] pub compatible_with_1_0: bool, /// Remove source file #[arg(long, short = 'R')] pub remove_file: bool, /// Disable compress meta #[arg(long)] pub disable_compress_meta: bool, /// Encryption algorithm (AES/GCM, CHACHA20/POLY1305 or AES, CHACHA20, default AES/GCM) #[arg(long, short = 'A')] pub encryption_algorithm: Option, } pub fn encrypt(cmd_encrypt: CmdEncrypt) -> XResult<()> { let config = TinyEncryptConfig::load(TINY_ENC_CONFIG_FILE)?; debugging!("Found tiny encrypt config: {:?}", config); let envelops = config.find_envelops(&cmd_encrypt.profile, &cmd_encrypt.key_filter)?; if envelops.is_empty() { return simple_error!("Cannot find any valid envelops"); } debugging!("Found envelops: {:?}", envelops); let envelop_tkids: Vec<_> = envelops.iter() .map(|e| format!("{}:{}", e.r#type.get_name(), e.kid)) .collect(); information!("Matched {} envelop(s): \n- {}", envelops.len(), envelop_tkids.join("\n- ")); debugging!("Cmd encrypt: {:?}", cmd_encrypt); let start = Instant::now(); let mut succeed_count = 0; let mut skipped_count = 0; let mut failed_count = 0; let mut total_len = 0_u64; for path in &cmd_encrypt.paths { let start_encrypt_single = Instant::now(); match encrypt_single(path, &envelops, &cmd_encrypt) { Ok(len) => { total_len += len; if len > 0 { succeed_count += 1; } else { skipped_count += 1; } success!( "Encrypt {} succeed, cost {} ms, file size {} byte(s)", path.to_str().unwrap_or("N/A"), start_encrypt_single.elapsed().as_millis(), len ); } Err(e) => { failed_count += 1; failure!("Encrypt {} failed: {}", path.to_str().unwrap_or("N/A"), e); } } } if (succeed_count + failed_count) > 1 { success!( "Encrypt succeed {} file(s) {} byte(s), failed {} file(s), skipped {} file(s), total cost {} ms", succeed_count, total_len, failed_count, skipped_count, start.elapsed().as_millis(), ); } Ok(()) } fn encrypt_single(path: &PathBuf, envelops: &[&TinyEncryptConfigEnvelop], cmd_encrypt: &CmdEncrypt) -> XResult { let path_display = format!("{}", path.display()); if path_display.ends_with(TINY_ENC_FILE_EXT) { information!("Tiny enc file skipped: {}", path_display); return Ok(0); } let encryption_algorithm = cmd_encrypt.encryption_algorithm.as_ref() .map(String::as_str).unwrap_or(consts::TINY_ENC_AES_GCM) .to_lowercase(); let cryptor = match encryption_algorithm.as_str() { "aes" | "aes/gcm" => Cryptor::Aes256Gcm, "chacha20" | "chacha20/poly1305" => Cryptor::ChaCha20Poly1305, _ => return simple_error!("Unknown encryption algorithm: {}, should be AES or CHACHA20", encryption_algorithm), }; information!("Using encryption algorithm: {}", cryptor.get_name()); util::require_file_exists(path)?; let mut file_in = opt_result!(File::open(path), "Open file: {} failed: {}", &path_display); let path_out = format!("{}{}", path_display, TINY_ENC_FILE_EXT); util::require_file_not_exists(path_out.as_str())?; let (key, nonce) = util::make_key256_and_nonce(); let envelops = encrypt_envelops(&key.0, envelops)?; let encrypted_comment = match &cmd_encrypt.encrypted_comment { None => None, Some(encrypted_comment) => Some(util::encode_base64( &crypto_simple::encrypt_with_salt( cryptor, &key.0, &nonce.0, SALT_COMMENT, encrypted_comment.as_bytes())?)) }; let file_metadata = opt_result!(fs::metadata(path), "Read file: {} meta failed: {}", path.display()); let enc_encrypted_meta = EncEncryptedMeta { filename: Some(util::get_file_name(path)), c_time: file_metadata.created().ok().and_then(|t| t.to_millis()), m_time: file_metadata.modified().ok().and_then(|t| t.to_millis()), }; let enc_encrypted_meta_bytes = opt_result!(enc_encrypted_meta.seal( cryptor, &key.0, &nonce.0), "Seal enc-encrypted-meta failed: {}"); let enc_metadata = EncMetadata { comment: cmd_encrypt.comment.clone(), encrypted_comment, encrypted_meta: Some(util::encode_base64(&enc_encrypted_meta_bytes)), compress: cmd_encrypt.compress, }; let mut encrypt_meta = TinyEncryptMeta::new( &file_metadata, &enc_metadata, cryptor, &nonce.0, envelops); debugging!("Encrypted meta: {:?}", encrypt_meta); if cmd_encrypt.compatible_with_1_0 { if !cmd_encrypt.disable_compress_meta { return simple_error!("Compatible with 1.0 mode must turns --disable-compress-meta on."); } if let Cryptor::Aes256Gcm = Cryptor::Aes256Gcm {} else { return simple_error!("Compatible with 1.0 mode must use AES/GCM."); } encrypt_meta = process_compatible_with_1_0(encrypt_meta)?; if encrypt_meta.pgp_envelop.is_none() && encrypt_meta.ecdh_envelop.is_none() { return simple_error!("Compatible with 1.0 mode must contains PGP or ECDH Envelop."); } } let mut file_out = File::create(&path_out)?; let compress_meta = !cmd_encrypt.disable_compress_meta; let _ = util_enc_file::write_tiny_encrypt_meta(&mut file_out, &encrypt_meta, compress_meta)?; let compress_desc = iff!(cmd_encrypt.compress, " [with compress]", ""); let start = Instant::now(); encrypt_file( &mut file_in, file_metadata.len(), &mut file_out, cryptor, &key.0, &nonce.0, cmd_encrypt.compress, &cmd_encrypt.compress_level, )?; drop(file_out); let encrypt_duration = start.elapsed(); debugging!("Inner encrypt file{}: {} elapsed: {} ms", compress_desc, path_display, encrypt_duration.as_millis()); if cmd_encrypt.remove_file { util::remove_file_with_msg(path); } Ok(file_metadata.len()) } fn process_compatible_with_1_0(mut encrypt_meta: TinyEncryptMeta) -> XResult { if let Some(envelops) = encrypt_meta.envelops { let mut filter_envelops = vec![]; for envelop in envelops { if (envelop.r#type == TinyEncryptEnvelopType::Pgp) && encrypt_meta.pgp_envelop.is_none() { encrypt_meta.pgp_fingerprint = Some(format!("KID:{}", envelop.kid)); encrypt_meta.pgp_envelop = Some(envelop.encrypted_key.clone()); } else if (envelop.r#type == TinyEncryptEnvelopType::Ecdh) && encrypt_meta.ecdh_envelop.is_none() { encrypt_meta.ecdh_point = Some(format!("KID:{}", envelop.kid)); encrypt_meta.ecdh_envelop = Some(envelop.encrypted_key.clone()); } else { filter_envelops.push(envelop); } } encrypt_meta.envelops = if filter_envelops.is_empty() { None } else { Some(filter_envelops) }; if encrypt_meta.envelops.is_none() { encrypt_meta.version = TINY_ENCRYPT_VERSION_10.to_string(); } } Ok(encrypt_meta) } fn encrypt_file(file_in: &mut File, file_len: u64, file_out: &mut impl Write, cryptor: Cryptor, key: &[u8], nonce: &[u8], compress: bool, compress_level: &Option) -> XResult { let mut total_len = 0_u64; let mut write_len = 0_u64; let mut buffer = [0u8; 1024 * 8]; let mut gz_encoder = match compress_level { None => GzStreamEncoder::new_default(), Some(compress_level) => { if *compress_level > 9 { return simple_error!("Compress level must in range [0, 9]"); } GzStreamEncoder::new(Compression::new(*compress_level)) } }; let progress = Progress::new(file_len); let mut encryptor = cryptor.encryptor(key, nonce)?; loop { let len = opt_result!(file_in.read(&mut buffer), "Read file failed: {}"); if len == 0 { let last_block_and_tag = if compress { let last_compressed_buffer = opt_result!(gz_encoder.finalize(), "Decompress file failed: {}"); let mut encrypted_block = encryptor.update(&last_compressed_buffer); let (last_block, tag) = encryptor.finalize(); write_len += encrypted_block.len() as u64; write_len += last_block.len() as u64; encrypted_block.extend_from_slice(&last_block); encrypted_block.extend_from_slice(&tag); encrypted_block } else { let (mut last_block, tag) = encryptor.finalize(); write_len += last_block.len() as u64; last_block.extend_from_slice(&tag); last_block }; opt_result!(file_out.write_all(&last_block_and_tag), "Write file failed: {}"); progress.finish(); debugging!("Encrypt finished, total bytes: {}", total_len); if compress { information!("File is compressed: {} byte(s) -> {} byte(s), ratio: {}%", total_len, write_len, util::ratio(write_len, total_len)); } break; } else { total_len += len as u64; let encrypted = if compress { let compressed = opt_result!(gz_encoder.update(&buffer[0..len]), "Decompress file failed: {}"); encryptor.update(&compressed) } else { encryptor.update(&buffer[0..len]) }; write_len += encrypted.len() as u64; opt_result!(file_out.write_all(&encrypted), "Write file failed: {}"); progress.position(total_len); } } Ok(total_len) } fn encrypt_envelops(key: &[u8], envelops: &[&TinyEncryptConfigEnvelop]) -> XResult> { let mut encrypted_envelops = vec![]; for envelop in envelops { match envelop.r#type { TinyEncryptEnvelopType::Pgp => { encrypted_envelops.push(encrypt_envelop_pgp(key, envelop)?); } TinyEncryptEnvelopType::PgpX25519 => { encrypted_envelops.push(encrypt_envelop_ecdh_x25519(key, envelop)?); } TinyEncryptEnvelopType::Ecdh => { encrypted_envelops.push(encrypt_envelop_ecdh(key, envelop)?); } TinyEncryptEnvelopType::EcdhP384 => { encrypted_envelops.push(encrypt_envelop_ecdh_p384(key, envelop)?); } _ => return simple_error!("Not supported type: {:?}", envelop.r#type), } } Ok(encrypted_envelops) } fn encrypt_envelop_ecdh(key: &[u8], envelop: &TinyEncryptConfigEnvelop) -> XResult { let public_key_point_hex = &envelop.public_part; let (shared_secret, ephemeral_spki) = util_p256::compute_shared_secret(public_key_point_hex)?; encrypt_envelop_shared_secret(key, &shared_secret, &ephemeral_spki, ENC_AES256_GCM_P256, envelop) } fn encrypt_envelop_ecdh_p384(key: &[u8], envelop: &TinyEncryptConfigEnvelop) -> XResult { let public_key_point_hex = &envelop.public_part; let (shared_secret, ephemeral_spki) = util_p384::compute_p384_shared_secret(public_key_point_hex)?; encrypt_envelop_shared_secret(key, &shared_secret, &ephemeral_spki, ENC_AES256_GCM_P384, envelop) } fn encrypt_envelop_ecdh_x25519(key: &[u8], envelop: &TinyEncryptConfigEnvelop) -> XResult { let public_key_point_hex = &envelop.public_part; let (shared_secret, ephemeral_spki) = util_x25519::compute_x25519_shared_secret(public_key_point_hex)?; encrypt_envelop_shared_secret(key, &shared_secret, &ephemeral_spki, ENC_AES256_GCM_X25519, envelop) } fn encrypt_envelop_shared_secret(key: &[u8], shared_secret: &[u8], ephemeral_spki: &[u8], enc_type: &str, envelop: &TinyEncryptConfigEnvelop) -> XResult { let shared_key = util::simple_kdf(shared_secret); let (_, nonce) = util::make_key256_and_nonce(); let encrypted_key = crypto_simple::encrypt( Cryptor::Aes256Gcm, &shared_key, &nonce.0, key)?; let wrap_key = WrapKey { header: WrapKeyHeader { kid: None, // Some(envelop.kid.clone()), enc: enc_type.to_string(), e_pub_key: util::encode_base64_url_no_pad(ephemeral_spki), }, nonce: nonce.0.clone(), encrypted_data: encrypted_key, }; let encoded_wrap_key = wrap_key.encode()?; Ok(TinyEncryptEnvelop { r#type: envelop.r#type, kid: envelop.kid.clone(), desc: None, // envelop.desc.clone(), encrypted_key: encoded_wrap_key, }) } fn encrypt_envelop_pgp(key: &[u8], envelop: &TinyEncryptConfigEnvelop) -> XResult { let pgp_public_key = opt_result!(parse_spki(&envelop.public_part), "Parse PGP public key failed: {}"); let mut rng = rand::thread_rng(); let encrypted_key = opt_result!(pgp_public_key.encrypt(&mut rng, Pkcs1v15Encrypt, key), "PGP public key encrypt failed: {}"); Ok(TinyEncryptEnvelop { r#type: envelop.r#type, kid: envelop.kid.clone(), desc: None, // envelop.desc.clone(), encrypted_key: util::encode_base64(&encrypted_key), }) }