feat: add ml/rusty-mathine

This commit is contained in:
2020-12-05 10:28:57 +08:00
parent 5157903b3a
commit 907c894dbc
5 changed files with 228 additions and 1 deletions

View File

@@ -57,6 +57,8 @@ Project or files:
│   └── unixsocket │   └── unixsocket
├── __log ├── __log
│   └── log4rs │   └── log4rs
├── __machinelearning
│   └── rusty-machine
├── __misc ├── __misc
│   ├── better_panic │   ├── better_panic
│   ├── fancy-regex │   ├── fancy-regex
@@ -145,7 +147,7 @@ Project or files:
├── vec.rs ├── vec.rs
└── while.rs └── while.rs
117 directories, 26 files 119 directories, 26 files
``` ```

172
__machinelearning/rusty-machine/Cargo.lock generated Normal file
View File

@@ -0,0 +1,172 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
[[package]]
name = "autocfg"
version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cdb031dd78e28731d87d56cc8ffef4a8f36ca26c38fe2de700543e627f8a464a"
[[package]]
name = "fuchsia-cprng"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a06f77d526c1a601b7c4cdd98f54b5eaabffc14d5f2f0296febdc7f357c6d3ba"
[[package]]
name = "libc"
version = "0.2.80"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4d58d1b70b004888f764dfbf6a26a3b0342a1632d33968e4a179d8011c760614"
[[package]]
name = "matrixmultiply"
version = "0.1.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dcad67dcec2d58ff56f6292582377e6921afdf3bfbd533e26fb8900ae575e002"
dependencies = [
"rawpointer",
]
[[package]]
name = "num"
version = "0.1.42"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4703ad64153382334aa8db57c637364c322d3372e097840c72000dabdcf6156e"
dependencies = [
"num-integer",
"num-iter",
"num-traits",
]
[[package]]
name = "num-integer"
version = "0.1.44"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d2cc698a63b549a70bc047073d2949cce27cd1c7b0a4a862d08a8031bc2801db"
dependencies = [
"autocfg",
"num-traits",
]
[[package]]
name = "num-iter"
version = "0.1.42"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b2021c8337a54d21aca0d59a92577a029af9431cb59b909b03252b9c164fad59"
dependencies = [
"autocfg",
"num-integer",
"num-traits",
]
[[package]]
name = "num-traits"
version = "0.2.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9a64b1ec5cda2586e284722486d802acf1f7dbdc623e2bfc57e65ca1cd099290"
dependencies = [
"autocfg",
]
[[package]]
name = "rand"
version = "0.3.23"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "64ac302d8f83c0c1974bf758f6b041c6c8ada916fbb44a609158ca8b064cc76c"
dependencies = [
"libc",
"rand 0.4.6",
]
[[package]]
name = "rand"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "552840b97013b1a26992c11eac34bdd778e464601a4c2054b5f0bff7c6761293"
dependencies = [
"fuchsia-cprng",
"libc",
"rand_core 0.3.1",
"rdrand",
"winapi",
]
[[package]]
name = "rand_core"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a6fdeb83b075e8266dcc8762c22776f6877a63111121f5f8c7411e5be7eed4b"
dependencies = [
"rand_core 0.4.2",
]
[[package]]
name = "rand_core"
version = "0.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c33a3c44ca05fa6f1807d8e6743f3824e8509beca625669633be0acbdf509dc"
[[package]]
name = "rawpointer"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ebac11a9d2e11f2af219b8b8d833b76b1ea0e054aa0e8d8e9e4cbde353bdf019"
[[package]]
name = "rdrand"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "678054eb77286b51581ba43620cc911abf02758c91f93f479767aed0f90458b2"
dependencies = [
"rand_core 0.3.1",
]
[[package]]
name = "rulinalg"
version = "0.3.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5670ce3717deb2d4436bdb29f07c549b56595f1fd8af1ca4682f1c1b1ac57f86"
dependencies = [
"matrixmultiply",
"num",
]
[[package]]
name = "rusty-machine"
version = "0.1.0"
dependencies = [
"rusty-machine 0.5.4",
]
[[package]]
name = "rusty-machine"
version = "0.5.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dee5358236bbd0835aeee9a8b04c8b9b0aaea243a1a1a71253957b4606fb9171"
dependencies = [
"num",
"rand 0.3.23",
"rulinalg",
]
[[package]]
name = "winapi"
version = "0.3.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5c839a674fcd7a98952e593242ea400abe93992746761e38641405d28b00f419"
dependencies = [
"winapi-i686-pc-windows-gnu",
"winapi-x86_64-pc-windows-gnu",
]
[[package]]
name = "winapi-i686-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"
[[package]]
name = "winapi-x86_64-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f"

View File

@@ -0,0 +1,11 @@
[package]
name = "rusty-machine"
version = "0.1.0"
authors = ["Hatter Jiang <jht5945@gmail.com>"]
edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
rusty-machine = "0.5.4"

View File

@@ -0,0 +1,5 @@
Rusty-Machine 机器学习库
https://mp.weixin.qq.com/s/fWNMnp846Yqy4AGENB1JWw

View File

@@ -0,0 +1,37 @@
use rusty_machine::linalg::{Matrix, Vector};
use rusty_machine::learning::gp::{GaussianProcess, ConstMean};
use rusty_machine::learning::toolkit::kernel::SquaredExp;
use rusty_machine::learning::SupModel;
fn main() {
// 首先获取一些数据。
// 一些示例训练数据。
let inputs = Matrix::new(3,3,vec![1.,1.,1.,2.,2.,2.,3.,3.,3.]);
let targets = Vector::new(vec![0.,1.,0.]);
// 一些示例测试数据。
let test_inputs = Matrix::new(2,3, vec![1.5,1.5,1.5,2.5,2.5,2.5]);
// 现在设置好我们的模组
// 这几乎是rusty-machine 中最复杂的模组了!
// 设置平方指数核函数,长度参数 2宽度参数 1。
let ker = SquaredExp::new(2., 1.);
// 零函数
let zero_mean = ConstMean::default();
// 用核函数,平均值, 噪声0.5来构建一个高斯过程。
let mut gp = GaussianProcess::new(ker, zero_mean, 0.5);
// 现在我们可以训练并且用这个模组进行预测了。
// 训练模组!
gp.train(&inputs, &targets).unwrap();
// 使用测试数据来测试预测。
let outputs = gp.predict(&test_inputs).unwrap();
println!("{:?}", outputs);
}