feat: normal distribution

This commit is contained in:
2025-07-27 15:52:35 +08:00
parent db0d77cc02
commit 0a3a74d4ba
2 changed files with 74 additions and 0 deletions

View File

@@ -0,0 +1,45 @@
package me.hatter.math;
import me.hatter.math.util.MathUtil;
import me.hatter.tools.commons.string.StringUtil;
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.ArrayList;
import java.util.List;
public class NormalDistribution {
public static void main(String[] args) {
BigDecimal mu = BigDecimal.valueOf(0);
BigDecimal sigma = MathUtil.sqrt(BigDecimal.valueOf(0.2), 100);
List<String> list = new ArrayList<>();
list.add("G = Graphics()");
for (int i = -200; i <= 200; i++) {
double x = ((double) i) / 100;
BigDecimal fx = nd(mu, sigma, BigDecimal.valueOf(x)).setScale(10, RoundingMode.HALF_UP);
// System.out.println(Arrays.asList(x, fx.toPlainString()));
list.add("G += point((" + x + ", " + fx.toPlainString() + "), color='blue', size=10)");
}
list.add("G += line([(-2, 0), (2, 0)], color='black')");
list.add("G += line([(0, -0.1), (0, 1.1)], color='black')");
list.add("show(G, xmin=-2, xmax=2, ymin=-0.1, ymax=1.1, aspect_ratio=1)");
System.out.println(StringUtil.join(list, "\n"));
}
public static BigDecimal nd(BigDecimal mu, BigDecimal sigma, BigDecimal x) {
// \frac{1}{\sigma \times \sqrt{2\times \pi}}
BigDecimal pa = BigDecimal.ONE.divide(
sigma.multiply(MathUtil.sqrt(BigDecimal.valueOf(2).multiply(MathUtil.PI), 100))
, 100, RoundingMode.HALF_UP
);
// \frac{(x-\mu)^2}{2\times \sigma^2}
BigDecimal pb = x.subtract(mu).pow(2).divide(
BigDecimal.valueOf(2).multiply(sigma.pow(2))
, 100, RoundingMode.HALF_UP
);
return pa.multiply(MathUtil.pow(MathUtil.E, BigDecimal.ZERO.subtract(pb)))
.setScale(100, RoundingMode.HALF_UP);
}
}

View File

@@ -87,4 +87,33 @@ public class MathUtil {
return x; return x;
} }
// 泰勒级数展开Generated By Qwen3-Coder
public static BigDecimal pow(BigDecimal base, BigDecimal exponent) {
if (exponent.compareTo(BigDecimal.ZERO) == 0) {
return BigDecimal.ONE;
}
if (base.compareTo(BigDecimal.ONE) == 0) {
return BigDecimal.ONE;
}
if (exponent.compareTo(BigDecimal.ONE) == 0) {
return base;
}
// 使用公式: a^b = e^(b * ln(a))
BigDecimal lnBase = ln(base);
BigDecimal exponentLnBase = exponent.multiply(lnBase);
return exp(exponentLnBase);
}
// 这里需要实现自然对数的计算,可以使用泰勒级数
// 简化处理使用Math.log转换
public static BigDecimal ln(BigDecimal x) {
return BigDecimal.valueOf(Math.log(x.doubleValue()));
}
// 指数函数的近似计算(简化版)
// 简化处理使用Math.exp转换
public static BigDecimal exp(BigDecimal x) {
return BigDecimal.valueOf(Math.exp(x.doubleValue()));
}
} }