feat: add sha256_length_extension_attacks

This commit is contained in:
2025-01-25 16:52:46 +08:00
parent 22e94af0f5
commit 3e93661b67
5 changed files with 618 additions and 0 deletions

View File

@@ -0,0 +1,26 @@
> Copied from: https://github.com/skerkour/kerkour.com/tree/main/blog/2023/sha256_length_extension_attacks
# [Breaking SHA256: length extension attacks in practice](https://kerkour.com/sha256-length-extension-attacks)
## Usage
```bash
$ go run ./ -verbose
SecretKey: 7365637265747365637265747365637265747365637265747365637265747365
Legitimate Data: user_id=1&role=user
Legitimate Signature SHA256(SecretKey || LegitimateData): 5b0b4b2472778fea87faac08a72a47d24538bff9d7f19a3a85d069893e2b08ab
Verify LegitimateSignature == SHA256(SecretKey || LegitimateData): true
---------------------------------------------------------------------------------------------------
Malicious Data: &something=true&role=admin
Malicious Message (LegitimateData || padding || MaliciousData):
00000000 75 73 65 72 5f 69 64 3d 31 26 72 6f 6c 65 3d 75 |user_id=1&role=u|
00000010 73 65 72 80 00 00 00 00 00 00 00 00 00 00 01 98 |ser.............|
00000020 26 73 6f 6d 65 74 68 69 6e 67 3d 74 72 75 65 26 |&something=true&|
00000030 72 6f 6c 65 3d 61 64 6d 69 6e |role=admin|
Malicious Signature: 8c37e11e8397b39cba72fa0e4769716c69a7ba9e29cfaf00d4601e086e85dd8f
Verify MaliciousSignature == SHA256(SecretKey, MaliciousMessage): true
```

View File

@@ -0,0 +1,3 @@
module sha256_length_extension_attacks
go 1.22

View File

@@ -0,0 +1,200 @@
package main
import (
"crypto/sha256"
"crypto/subtle"
"encoding/binary"
"encoding/hex"
"flag"
"fmt"
)
var verbose bool
func main() {
flag.BoolVar(&verbose, "verbose", false, "verbose")
flag.Parse()
// 256 bits secretKey
// in real life it should be generated using crypto.Rand
secretKey := []byte("secretsecretsecretsecretsecretse")
legitimateData := []byte("user_id=1&role=user")
legitimateSignature := sign(secretKey, legitimateData)
// sha256 := append(make([]byte, 0), secretKey...)
// // sha256 := make([]byte, 0)
// sha256 = append(sha256, legitimateData...)
// oadding := generatePadding(uint64(len(secretKey)), uint64(len(legitimateData)))
// sha256 = append(sha256, oadding...)
// fmt.Println(hex.Dump(sha256))
fmt.Printf("SecretKey: %s\n", hex.EncodeToString(secretKey))
fmt.Printf("Legitimate Data: %s\n", string(legitimateData))
fmt.Printf("Legitimate Signature SHA256(SecretKey || LegitimateData): %s\n", hex.EncodeToString(legitimateSignature))
fmt.Printf("Verify LegitimateSignature == SHA256(SecretKey || LegitimateData): %v\n", verifySignature(secretKey, legitimateSignature, legitimateData))
fmt.Println("\n---------------------------------------------------------------------------------------------------\n")
maliciousData := []byte("&something=true&role=admin")
maliciousMessage := generateMaliciousMessage(uint64(len(secretKey)), legitimateData, maliciousData)
maliciousSignature := forgeSignature(legitimateSignature, maliciousData, uint64(len(secretKey)+len(legitimateData)))
fmt.Printf("Malicious Data: %s\n", string(maliciousData))
if verbose {
fmt.Println("Malicious Message (LegitimateData || padding || MaliciousData):")
fmt.Println(hex.Dump(maliciousMessage))
}
fmt.Printf("Malicious Signature: %s\n", hex.EncodeToString(maliciousSignature))
fmt.Printf("Verify MaliciousSignature == SHA256(SecretKey, MaliciousMessage): %v\n", verifySignature(secretKey, maliciousSignature, maliciousMessage))
}
// forgeSignature performs a length extension attack by loading a SHA256 hash from the legitimate signature
// and appending the malicious data.
func forgeSignature(legitimateSignature []byte, maliciousData []byte, secretKeyAndDataLength uint64) (forgedSignature []byte) {
digest := loadSha256(legitimateSignature, secretKeyAndDataLength)
digest.Write(maliciousData)
hash := digest.Sum(nil)
forgedSignature = hash[:]
return
}
// generateMaliciousMessage generates the malicious message used to forge a signature without knowing the
// secretKey. The message has the following format: (legitimateData || padding || maliciousData)
func generateMaliciousMessage(secretKeyLength uint64, legitimateData []byte, maliciousData []byte) (message []byte) {
padding := generatePadding(secretKeyLength + uint64(len(legitimateData)))
message = make([]byte, 0, len(legitimateData)+len(padding)+len(maliciousData))
message = append(message, legitimateData...)
message = append(message, padding...)
message = append(message, maliciousData...)
return
}
// generatePadding generates the required padding to fill SHA256 blocks of 512 bits (64 bytes)
// with (secretKey || data || padding)
// The padding format is defined in RFC6234: https://www.rfc-editor.org/rfc/rfc6234#page-8
// inspired by `sha256.go`
func generatePadding(secretKeyAndDataLength uint64) []byte {
var tmp [64 + 8]byte // padding + length buffer
var t uint64
// Padding. Add a 1 bit and 0 bits until 56 bytes mod 64.
tmp[0] = 0x80
if secretKeyAndDataLength%64 < 56 {
t = 56 - secretKeyAndDataLength%64
} else {
t = 64 + 56 - secretKeyAndDataLength%64
}
// Length in bits.
secretKeyAndDataLength <<= 3
padlen := tmp[:t+8]
binary.BigEndian.PutUint64(padlen[t+0:], secretKeyAndDataLength)
return padlen
}
// verifySignature verifies that Signature == SHA256(secretKey || data)
func verifySignature(secretKey []byte, signatureToVerify []byte, data []byte) (isValid bool) {
isValid = false
signature := sign(secretKey, data)
if subtle.ConstantTimeCompare(signature, signatureToVerify) == 1 {
isValid = true
}
return
}
// sign generates a SHA256 MAC such as SHA256(secretKey || data)
func sign(secretKey []byte, data []byte) (signature []byte) {
hasher := sha256.New()
hasher.Write(secretKey)
hasher.Write(data)
hash := hasher.Sum(nil)
signature = hash[:]
return
}
// loadSha256 is a slightly modified version of digest.UnmarshalBinary in order to load the state from a
// normal SHA256 hash instead of the "proprietary version" generated by digest.MarshalBinary
func loadSha256(hashBytes []byte, secretKeyAndDataLength uint64) (hash *digest) {
if len(hashBytes) != sha256.Size {
panic("loadSha256: not a valid SHA256 hash")
}
hash = new(digest)
hash.Reset()
hashBytes, hash.h[0] = consumeUint32(hashBytes)
hashBytes, hash.h[1] = consumeUint32(hashBytes)
hashBytes, hash.h[2] = consumeUint32(hashBytes)
hashBytes, hash.h[3] = consumeUint32(hashBytes)
hashBytes, hash.h[4] = consumeUint32(hashBytes)
hashBytes, hash.h[5] = consumeUint32(hashBytes)
hashBytes, hash.h[6] = consumeUint32(hashBytes)
_, hash.h[7] = consumeUint32(hashBytes)
// hash.len is the nearest upper multiple of 64 of the hashed data (secretKeyAndDataLength)
// hash.len = secretKeyAndDataLength + 64 - (secretKeyAndDataLength % 64)
// hash.nx = int(hash.len % chunk)
// hash.len is the length of consumed bytes, including the paddings
hash.len = secretKeyAndDataLength + uint64(len(generatePadding(secretKeyAndDataLength)))
return
}
// func signBinary(secretKey []byte, data []byte) (signature []byte) {
// hasher := new(digest)
// hasher.Reset()
// hasher.Write(secretKey)
// hasher.Write(data)
// hash := hasher.checkSum()
// signature = hash[:]
// if verbose {
// binary, _ := hasher.MarshalBinary()
// fmt.Println("SHA256 Binary:")
// fmt.Println(hex.Dump(binary))
// }
// return
// }
// func loadSha256Binary(hashBytes []byte, secretKeyAndDataLength uint64) (hash *digest) {
// digestBinary := make([]byte, 0, marshaledSize)
// digestBinary = append(digestBinary, []byte(magic256)...)
// digestBinary = append(digestBinary, hashBytes...)
// digestBinary = append(digestBinary, make([]byte, chunk)...)
// digestBinary = binary.BigEndian.AppendUint64(digestBinary, secretKeyAndDataLength+64-(secretKeyAndDataLength%64))
// hash = new(digest)
// hash.Reset()
// err := hash.UnmarshalBinary(digestBinary)
// if err != nil {
// panic(err)
// }
// if verbose {
// fmt.Println("SHA256 state:")
// fmt.Println(hex.Dump(digestBinary))
// }
// return
// }
// dumpBinary prints 00000000 00000000 00000000 00000001
// func dumpBinary(data []byte) {
// for i, n := range data {
// fmt.Printf("%08b ", n)
// if (i+1)%4 == 0 && i != 0 {
// fmt.Println("")
// }
// }
// fmt.Println("")
// }

View File

@@ -0,0 +1,261 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package sha256 implements the SHA224 and SHA256 hash algorithms as defined
// in FIPS 180-4.
package main
import (
"crypto"
// "crypto/internal/boring"
"encoding/binary"
"errors"
"hash"
)
func init() {
crypto.RegisterHash(crypto.SHA224, New224)
crypto.RegisterHash(crypto.SHA256, New)
}
// The size of a SHA256 checksum in bytes.
const Size = 32
// The size of a SHA224 checksum in bytes.
const Size224 = 28
// The blocksize of SHA256 and SHA224 in bytes.
const BlockSize = 64
const (
chunk = 64
init0 = 0x6A09E667
init1 = 0xBB67AE85
init2 = 0x3C6EF372
init3 = 0xA54FF53A
init4 = 0x510E527F
init5 = 0x9B05688C
init6 = 0x1F83D9AB
init7 = 0x5BE0CD19
init0_224 = 0xC1059ED8
init1_224 = 0x367CD507
init2_224 = 0x3070DD17
init3_224 = 0xF70E5939
init4_224 = 0xFFC00B31
init5_224 = 0x68581511
init6_224 = 0x64F98FA7
init7_224 = 0xBEFA4FA4
)
// digest represents the partial evaluation of a checksum.
type digest struct {
h [8]uint32
x [chunk]byte
nx int
len uint64
is224 bool // mark if this digest is SHA-224
}
const (
magic224 = "sha\x02"
magic256 = "sha\x03"
marshaledSize = len(magic256) + 8*4 + chunk + 8
)
func (d *digest) MarshalBinary() ([]byte, error) {
b := make([]byte, 0, marshaledSize)
if d.is224 {
b = append(b, magic224...)
} else {
b = append(b, magic256...)
}
b = binary.BigEndian.AppendUint32(b, d.h[0])
b = binary.BigEndian.AppendUint32(b, d.h[1])
b = binary.BigEndian.AppendUint32(b, d.h[2])
b = binary.BigEndian.AppendUint32(b, d.h[3])
b = binary.BigEndian.AppendUint32(b, d.h[4])
b = binary.BigEndian.AppendUint32(b, d.h[5])
b = binary.BigEndian.AppendUint32(b, d.h[6])
b = binary.BigEndian.AppendUint32(b, d.h[7])
b = append(b, d.x[:d.nx]...)
b = b[:len(b)+len(d.x)-d.nx] // already zero
b = binary.BigEndian.AppendUint64(b, d.len)
return b, nil
}
func (d *digest) UnmarshalBinary(b []byte) error {
if len(b) < len(magic224) || (d.is224 && string(b[:len(magic224)]) != magic224) || (!d.is224 && string(b[:len(magic256)]) != magic256) {
return errors.New("crypto/sha256: invalid hash state identifier")
}
if len(b) != marshaledSize {
return errors.New("crypto/sha256: invalid hash state size")
}
b = b[len(magic224):]
b, d.h[0] = consumeUint32(b)
b, d.h[1] = consumeUint32(b)
b, d.h[2] = consumeUint32(b)
b, d.h[3] = consumeUint32(b)
b, d.h[4] = consumeUint32(b)
b, d.h[5] = consumeUint32(b)
b, d.h[6] = consumeUint32(b)
b, d.h[7] = consumeUint32(b)
b = b[copy(d.x[:], b):]
b, d.len = consumeUint64(b)
d.nx = int(d.len % chunk)
return nil
}
func consumeUint64(b []byte) ([]byte, uint64) {
_ = b[7]
x := uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 |
uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56
return b[8:], x
}
func consumeUint32(b []byte) ([]byte, uint32) {
_ = b[3]
x := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
return b[4:], x
}
func (d *digest) Reset() {
if !d.is224 {
d.h[0] = init0
d.h[1] = init1
d.h[2] = init2
d.h[3] = init3
d.h[4] = init4
d.h[5] = init5
d.h[6] = init6
d.h[7] = init7
} else {
d.h[0] = init0_224
d.h[1] = init1_224
d.h[2] = init2_224
d.h[3] = init3_224
d.h[4] = init4_224
d.h[5] = init5_224
d.h[6] = init6_224
d.h[7] = init7_224
}
d.nx = 0
d.len = 0
}
// New returns a new hash.Hash computing the SHA256 checksum. The Hash
// also implements encoding.BinaryMarshaler and
// encoding.BinaryUnmarshaler to marshal and unmarshal the internal
// state of the hash.
func New() hash.Hash {
d := new(digest)
d.Reset()
return d
}
// New224 returns a new hash.Hash computing the SHA224 checksum.
func New224() hash.Hash {
d := new(digest)
d.is224 = true
d.Reset()
return d
}
func (d *digest) Size() int {
if !d.is224 {
return Size
}
return Size224
}
func (d *digest) BlockSize() int { return BlockSize }
func (d *digest) Write(p []byte) (nn int, err error) {
nn = len(p)
d.len += uint64(nn)
if d.nx > 0 {
n := copy(d.x[d.nx:], p)
d.nx += n
if d.nx == chunk {
block(d, d.x[:])
d.nx = 0
}
p = p[n:]
}
if len(p) >= chunk {
n := len(p) &^ (chunk - 1)
block(d, p[:n])
p = p[n:]
}
if len(p) > 0 {
d.nx = copy(d.x[:], p)
}
return
}
func (d *digest) Sum(in []byte) []byte {
// Make a copy of d so that caller can keep writing and summing.
d0 := *d
hash := d0.checkSum()
if d0.is224 {
return append(in, hash[:Size224]...)
}
return append(in, hash[:]...)
}
func (d *digest) checkSum() [Size]byte {
len := d.len
// Padding. Add a 1 bit and 0 bits until 56 bytes mod 64.
var tmp [64 + 8]byte // padding + length buffer
tmp[0] = 0x80
var t uint64
if len%64 < 56 {
t = 56 - len%64
} else {
t = 64 + 56 - len%64
}
// Length in bits.
len <<= 3
padlen := tmp[:t+8]
binary.BigEndian.PutUint64(padlen[t+0:], len)
d.Write(padlen)
if d.nx != 0 {
panic("d.nx != 0")
}
var digest [Size]byte
binary.BigEndian.PutUint32(digest[0:], d.h[0])
binary.BigEndian.PutUint32(digest[4:], d.h[1])
binary.BigEndian.PutUint32(digest[8:], d.h[2])
binary.BigEndian.PutUint32(digest[12:], d.h[3])
binary.BigEndian.PutUint32(digest[16:], d.h[4])
binary.BigEndian.PutUint32(digest[20:], d.h[5])
binary.BigEndian.PutUint32(digest[24:], d.h[6])
if !d.is224 {
binary.BigEndian.PutUint32(digest[28:], d.h[7])
}
return digest
}
// Sum256 returns the SHA256 checksum of the data.
func Sum256(data []byte) [Size]byte {
var d digest
d.Reset()
d.Write(data)
return d.checkSum()
}
// Sum224 returns the SHA224 checksum of the data.
func Sum224(data []byte) [Size224]byte {
var d digest
d.is224 = true
d.Reset()
d.Write(data)
sum := d.checkSum()
ap := (*[Size224]byte)(sum[:])
return *ap
}

View File

@@ -0,0 +1,128 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// SHA256 block step.
// In its own file so that a faster assembly or C version
// can be substituted easily.
package main
import "math/bits"
var _K = []uint32{
0x428a2f98,
0x71374491,
0xb5c0fbcf,
0xe9b5dba5,
0x3956c25b,
0x59f111f1,
0x923f82a4,
0xab1c5ed5,
0xd807aa98,
0x12835b01,
0x243185be,
0x550c7dc3,
0x72be5d74,
0x80deb1fe,
0x9bdc06a7,
0xc19bf174,
0xe49b69c1,
0xefbe4786,
0x0fc19dc6,
0x240ca1cc,
0x2de92c6f,
0x4a7484aa,
0x5cb0a9dc,
0x76f988da,
0x983e5152,
0xa831c66d,
0xb00327c8,
0xbf597fc7,
0xc6e00bf3,
0xd5a79147,
0x06ca6351,
0x14292967,
0x27b70a85,
0x2e1b2138,
0x4d2c6dfc,
0x53380d13,
0x650a7354,
0x766a0abb,
0x81c2c92e,
0x92722c85,
0xa2bfe8a1,
0xa81a664b,
0xc24b8b70,
0xc76c51a3,
0xd192e819,
0xd6990624,
0xf40e3585,
0x106aa070,
0x19a4c116,
0x1e376c08,
0x2748774c,
0x34b0bcb5,
0x391c0cb3,
0x4ed8aa4a,
0x5b9cca4f,
0x682e6ff3,
0x748f82ee,
0x78a5636f,
0x84c87814,
0x8cc70208,
0x90befffa,
0xa4506ceb,
0xbef9a3f7,
0xc67178f2,
}
func block(dig *digest, p []byte) {
var w [64]uint32
h0, h1, h2, h3, h4, h5, h6, h7 := dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7]
for len(p) >= chunk {
// Can interlace the computation of w with the
// rounds below if needed for speed.
for i := 0; i < 16; i++ {
j := i * 4
w[i] = uint32(p[j])<<24 | uint32(p[j+1])<<16 | uint32(p[j+2])<<8 | uint32(p[j+3])
}
for i := 16; i < 64; i++ {
v1 := w[i-2]
t1 := (bits.RotateLeft32(v1, -17)) ^ (bits.RotateLeft32(v1, -19)) ^ (v1 >> 10)
v2 := w[i-15]
t2 := (bits.RotateLeft32(v2, -7)) ^ (bits.RotateLeft32(v2, -18)) ^ (v2 >> 3)
w[i] = t1 + w[i-7] + t2 + w[i-16]
}
a, b, c, d, e, f, g, h := h0, h1, h2, h3, h4, h5, h6, h7
for i := 0; i < 64; i++ {
t1 := h + ((bits.RotateLeft32(e, -6)) ^ (bits.RotateLeft32(e, -11)) ^ (bits.RotateLeft32(e, -25))) + ((e & f) ^ (^e & g)) + _K[i] + w[i]
t2 := ((bits.RotateLeft32(a, -2)) ^ (bits.RotateLeft32(a, -13)) ^ (bits.RotateLeft32(a, -22))) + ((a & b) ^ (a & c) ^ (b & c))
h = g
g = f
f = e
e = d + t1
d = c
c = b
b = a
a = t1 + t2
}
h0 += a
h1 += b
h2 += c
h3 += d
h4 += e
h5 += f
h6 += g
h7 += h
p = p[chunk:]
}
dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7] = h0, h1, h2, h3, h4, h5, h6, h7
}