feat: init commit, copied from crate chacha20-poly-aead

This commit is contained in:
2023-10-20 00:05:22 +08:00
parent d74c0a2a15
commit 93d778bdcb
16 changed files with 2079 additions and 0 deletions

1
.gitignore vendored
View File

@@ -1,3 +1,4 @@
.idea/
# ---> Rust # ---> Rust
# Generated by Cargo # Generated by Cargo
# will have compiled files and executables # will have compiled files and executables

20
Cargo.toml Normal file
View File

@@ -0,0 +1,20 @@
[package]
name = "chacha20-poly1305-stream"
version = "0.1.0"
edition = "2021"
authors = ["Cesar Eduardo Barros <cesarb@cesarb.eti.br>", "Hatter Jiang <jht5945@gmail.com>"]
description = "A pure Rust implementation of the ChaCha20-Poly1305 AEAD from RFC 7539."
repository = "https://git.hatter.ink/hatter/chacha20-poly1305-stream"
readme = "README.md"
keywords = ["chacha20", "poly1305", "aead", "crypto"]
license = "MIT OR Apache-2.0"
[features]
bench = []
simd = []
simd_opt = ["simd"]
simd_asm = ["simd_opt"]
[dependencies]
constant_time_eq = "0.1.0"
clippy = { version = "0.0.37", optional = true }

202
LICENSE-APACHE Normal file
View File

@@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

19
LICENSE-MIT Normal file
View File

@@ -0,0 +1,19 @@
Copyright (c) 2015 The blake2-rfc Developers
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,75 @@
This is a pure Rust implementation of the ChaCha20-Poly1305 AEAD from
[RFC 7539].
[RFC 7539]: https://tools.ietf.org/html/rfc7539
## Design
There are two main designs for an encryption/decryption API: either
having one state/context struct with a method which is called repeatedly
to encrypt/decrypt the next fragment of data, or having a single
standalone function which is called once and does all the work in a
single call.
For authenticated encryption, it's important that on decryption no
output is produced until the authentication tag is verified. That
requires two passes over the data for decryption: the first pass
verifies the tag, and the second pass does the output. It would be
needlessly complex to implement this with a state/context struct, so
this crate uses a single function call to do the whole decryption. For
simmetry, the same design is used for the encryption function.
The base primitives (ChaCha20 and Poly1305) are not exposed separately,
since they are harder to use securely. This also allows their
implementation to be tuned to the combined use case; for instance, the
base primitives need no buffering.
## Limitations
The amount of data that can be encrypted in a single call is 2^32 - 1
blocks of 64 bytes, slightly less than 256 GiB. This limit could be
increased to 2^64 bytes, if necessary, by allowing the use of a shorter
nonce.
This crate does not attempt to clear potentially sensitive data from its
work memory (which includes the the stack and processor registers). To
do so correctly without a heavy performance penalty would require help
from the compiler. It's better to not attempt to do so than to present a
false assurance.
## SIMD optimization
This crate has experimental support for explicit SIMD optimizations. It
requires nightly Rust due to the use of unstable features.
The following cargo features enable the explicit SIMD optimization:
* `simd` enables the explicit use of SIMD vectors instead of a plain
struct
* `simd_opt` additionally enables the use of SIMD shuffles to implement
some of the rotates
While one might expect that each of these is faster than the previous
one, and that they are all faster than not enabling explicit SIMD
vectors, that's not always the case. It can vary depending on target
architecture and compiler options. If you need the extra speed from
these optimizations, benchmark each one (the `bench` feature enables
`cargo bench` in this crate, so you can use for instance `cargo bench
--features="bench simd_opt"`). They have currently been tuned for SSE2
(x86 and x86-64) and NEON (arm).
## License
Licensed under either of
* Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
* MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
at your option.
### Contribution
Unless you explicitly state otherwise, any contribution intentionally
submitted for inclusion in the work by you, as defined in the Apache-2.0
license, shall be dual licensed as above, without any additional terms or
conditions.

476
src/aead.rs Normal file
View File

@@ -0,0 +1,476 @@
// Copyright 2016 chacha20-poly1305-aead Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use std::error::Error;
use std::fmt::{self, Display, Formatter};
use std::io::{self, ErrorKind, Read, Write};
use crate::as_bytes::AsBytes;
use crate::chacha20::ChaCha20;
use constant_time_eq::constant_time_eq;
use crate::poly1305::Poly1305;
use crate::simd::u32x4;
const CHACHA20_COUNTER_OVERFLOW: u64 = ((1 << 32) - 1) * 64;
/// Encrypts a byte slice and returns the authentication tag.
///
/// # Example
///
/// ```
/// use chacha20_poly1305_aead::encrypt;
///
/// let key = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
/// 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31];
/// let nonce = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
/// let aad = [1, 2, 3, 4];
///
/// let plaintext = b"hello, world";
///
/// // Vec implements the Write trait
/// let mut ciphertext = Vec::with_capacity(plaintext.len());
///
/// let tag = encrypt(&key, &nonce, &aad, plaintext, &mut ciphertext).unwrap();
///
/// assert_eq!(ciphertext, [0xfc, 0x5a, 0x17, 0x82,
/// 0xab, 0xcf, 0xbc, 0x5d, 0x18, 0x29, 0xbf, 0x97]);
/// assert_eq!(tag, [0xdb, 0xb7, 0x0d, 0xda, 0xbd, 0xfa, 0x8c, 0xa5,
/// 0x60, 0xa2, 0x30, 0x3d, 0xe6, 0x07, 0x92, 0x10]);
/// ```
pub fn encrypt<W: Write>(key: &[u8], nonce: &[u8],
aad: &[u8], mut input: &[u8],
output: &mut W) -> io::Result<[u8; 16]> {
encrypt_read(key, nonce, aad, &mut input, output)
}
/// Encrypts bytes from a reader and returns the authentication tag.
///
/// This function is identical to the `encrypt` function, the only
/// difference being that its input comes from a reader instead of a
/// byte slice.
pub fn encrypt_read<R: Read, W: Write>(key: &[u8], nonce: &[u8],
aad: &[u8], input: &mut R,
output: &mut W) -> io::Result<[u8; 16]> {
let mut chacha20 = ChaCha20::new(key, nonce);
let mut poly1305 = Poly1305::new(&chacha20.next().as_bytes()[..32]);
let aad_len = aad.len() as u64;
let mut input_len = 0;
poly1305.padded_blocks(aad);
let mut buf = [u32x4::default(); 4];
loop {
let read = read_all(input, buf.as_mut_bytes())?;
if read == 0 { break; }
input_len += read as u64;
if input_len >= CHACHA20_COUNTER_OVERFLOW {
return Err(io::Error::new(ErrorKind::WriteZero,
"counter overflow"));
}
let block = chacha20.next();
buf[0] = buf[0] ^ block[0];
buf[1] = buf[1] ^ block[1];
buf[2] = buf[2] ^ block[2];
buf[3] = buf[3] ^ block[3];
poly1305.padded_blocks(&buf.as_bytes()[..read]);
output.write_all(&buf.as_bytes()[..read])?;
}
poly1305.block([aad_len.to_le(), input_len.to_le()].as_bytes());
let mut tag = [0; 16];
tag.clone_from_slice(poly1305.tag().as_bytes());
Ok(tag)
}
/// Verifies the authentication tag and decrypts a byte slice.
///
/// If the tag does not match, this function produces no output and
/// returns `Err(DecryptError::TagMismatch)`.
///
/// # Example
///
/// ```
/// # use chacha20_poly1305_aead::DecryptError;
/// # fn example() -> Result<(), DecryptError> {
/// use chacha20_poly1305_aead::decrypt;
///
/// let key = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
/// 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31];
/// let nonce = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
/// let aad = [1, 2, 3, 4];
///
/// let ciphertext = [0xfc, 0x5a, 0x17, 0x82, 0xab, 0xcf, 0xbc, 0x5d,
/// 0x18, 0x29, 0xbf, 0x97];
/// let tag = [0xdb, 0xb7, 0x0d, 0xda, 0xbd, 0xfa, 0x8c, 0xa5,
/// 0x60, 0xa2, 0x30, 0x3d, 0xe6, 0x07, 0x92, 0x10];
///
/// // Vec implements the Write trait
/// let mut plaintext = Vec::with_capacity(ciphertext.len());
///
/// try!(decrypt(&key, &nonce, &aad, &ciphertext, &tag, &mut plaintext));
///
/// assert_eq!(plaintext, b"hello, world");
/// # Ok(())
/// # }
/// # example().unwrap();
/// ```
pub fn decrypt<W: Write>(key: &[u8], nonce: &[u8],
aad: &[u8], mut input: &[u8], tag: &[u8],
output: &mut W) -> Result<(), DecryptError> {
let mut chacha20 = ChaCha20::new(key, nonce);
let mut poly1305 = Poly1305::new(&chacha20.next().as_bytes()[..32]);
let aad_len = aad.len() as u64;
let input_len = input.len() as u64;
assert!(tag.len() == 16);
if input_len >= CHACHA20_COUNTER_OVERFLOW {
return Err(io::Error::new(ErrorKind::WriteZero,
"counter overflow").into());
}
poly1305.padded_blocks(aad);
poly1305.padded_blocks(input);
poly1305.block([aad_len.to_le(), input_len.to_le()].as_bytes());
if !constant_time_eq(poly1305.tag().as_bytes(), tag) {
return Err(DecryptError::TagMismatch);
}
let mut buf = [u32x4::default(); 4];
loop {
let read = read_all(&mut input, buf.as_mut_bytes())?;
if read == 0 { break; }
let block = chacha20.next();
buf[0] = buf[0] ^ block[0];
buf[1] = buf[1] ^ block[1];
buf[2] = buf[2] ^ block[2];
buf[3] = buf[3] ^ block[3];
output.write_all(&buf.as_bytes()[..read])?;
}
Ok(())
}
fn read_all<R: Read>(reader: &mut R, mut buf: &mut [u8]) -> io::Result<usize> {
let mut read = 0;
while !buf.is_empty() {
match reader.read(buf) {
Ok(0) => break,
Ok(n) => { read += n; let tmp = buf; buf = &mut tmp[n..]; }
Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
Ok(read)
}
/// Error returned from the `decrypt` function.
#[derive(Debug)]
pub enum DecryptError {
/// The calculated Poly1305 tag did not match the given tag.
TagMismatch,
/// There was an error writing the output.
IoError(io::Error),
}
impl Display for DecryptError {
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
match *self {
DecryptError::TagMismatch => fmt.write_str(self.description()),
DecryptError::IoError(ref e) => e.fmt(fmt),
}
}
}
impl Error for DecryptError {
fn description(&self) -> &str {
match *self {
DecryptError::TagMismatch => "authentication tag mismatch",
DecryptError::IoError(ref e) => e.description(),
}
}
fn cause(&self) -> Option<&dyn Error> {
match *self {
DecryptError::TagMismatch => None,
DecryptError::IoError(ref e) => Some(e),
}
}
}
impl From<io::Error> for DecryptError {
fn from(error: io::Error) -> Self {
DecryptError::IoError(error)
}
}
impl From<DecryptError> for io::Error {
fn from(error: DecryptError) -> Self {
match error {
DecryptError::IoError(e) => e,
DecryptError::TagMismatch =>
io::Error::new(ErrorKind::InvalidData, error),
}
}
}
pub mod selftest {
use super::*;
static PLAINTEXT: &'static [u8] = b"\
Ladies and Gentlemen of the class of '99: If I could offer you o\
nly one tip for the future, sunscreen would be it.";
static AAD: &'static [u8] = &[0x50, 0x51, 0x52, 0x53,
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7];
static KEY: &'static [u8] = &[
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f];
static NONCE: &'static [u8] = &[0x07, 0x00, 0x00, 0x00,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47];
static CIPHERTEXT: &'static [u8] = &[
0xd3, 0x1a, 0x8d, 0x34, 0x64, 0x8e, 0x60, 0xdb,
0x7b, 0x86, 0xaf, 0xbc, 0x53, 0xef, 0x7e, 0xc2,
0xa4, 0xad, 0xed, 0x51, 0x29, 0x6e, 0x08, 0xfe,
0xa9, 0xe2, 0xb5, 0xa7, 0x36, 0xee, 0x62, 0xd6,
0x3d, 0xbe, 0xa4, 0x5e, 0x8c, 0xa9, 0x67, 0x12,
0x82, 0xfa, 0xfb, 0x69, 0xda, 0x92, 0x72, 0x8b,
0x1a, 0x71, 0xde, 0x0a, 0x9e, 0x06, 0x0b, 0x29,
0x05, 0xd6, 0xa5, 0xb6, 0x7e, 0xcd, 0x3b, 0x36,
0x92, 0xdd, 0xbd, 0x7f, 0x2d, 0x77, 0x8b, 0x8c,
0x98, 0x03, 0xae, 0xe3, 0x28, 0x09, 0x1b, 0x58,
0xfa, 0xb3, 0x24, 0xe4, 0xfa, 0xd6, 0x75, 0x94,
0x55, 0x85, 0x80, 0x8b, 0x48, 0x31, 0xd7, 0xbc,
0x3f, 0xf4, 0xde, 0xf0, 0x8e, 0x4b, 0x7a, 0x9d,
0xe5, 0x76, 0xd2, 0x65, 0x86, 0xce, 0xc6, 0x4b,
0x61, 0x16];
static TAG: &'static [u8] = &[
0x1a, 0xe1, 0x0b, 0x59, 0x4f, 0x09, 0xe2, 0x6a,
0x7e, 0x90, 0x2e, 0xcb, 0xd0, 0x60, 0x06, 0x91];
#[cold]
pub fn selftest() {
selftest_encrypt();
selftest_decrypt();
selftest_decrypt_mismatch();
}
#[cold]
pub fn selftest_encrypt() {
let mut output = Vec::with_capacity(PLAINTEXT.len());
let tag = encrypt(KEY, NONCE, AAD, PLAINTEXT, &mut output)
.expect("selftest failure");
assert_eq!(&output[..], CIPHERTEXT);
assert_eq!(tag, TAG);
}
#[cold]
pub fn selftest_decrypt() {
let mut output = Vec::with_capacity(CIPHERTEXT.len());
decrypt(KEY, NONCE, AAD, CIPHERTEXT, TAG, &mut output)
.expect("selftest failure");
assert_eq!(&output[..], PLAINTEXT);
}
#[cold]
pub fn selftest_decrypt_mismatch() {
let mut output = Vec::with_capacity(0);
let result = decrypt(KEY, NONCE, AAD, CIPHERTEXT, &[0; 16],
&mut output);
if let Err(DecryptError::TagMismatch) = result {
assert!(output.is_empty());
} else {
panic!("selftest failure");
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn selftest_encrypt() {
selftest::selftest_encrypt();
}
#[test]
fn selftest_decrypt() {
selftest::selftest_decrypt();
}
#[test]
fn selftest_decrypt_mismatch() {
selftest::selftest_decrypt_mismatch();
}
#[test]
fn test_encrypt() {
let mut output = Vec::with_capacity(PLAINTEXT.len());
let tag = encrypt(KEY, NONCE, AAD, PLAINTEXT.as_bytes(),
&mut output).expect("test failed");
assert_eq!(&output[..], CIPHERTEXT);
assert_eq!(tag, TAG);
}
#[test]
fn test_decrypt() {
let mut output = Vec::with_capacity(CIPHERTEXT.len());
decrypt(KEY, NONCE, AAD, CIPHERTEXT, TAG,
&mut output).expect("test failed");
assert_eq!(&output[..], PLAINTEXT.as_bytes());
}
static KEY: &'static [u8] = &[
0x1c, 0x92, 0x40, 0xa5, 0xeb, 0x55, 0xd3, 0x8a,
0xf3, 0x33, 0x88, 0x86, 0x04, 0xf6, 0xb5, 0xf0,
0x47, 0x39, 0x17, 0xc1, 0x40, 0x2b, 0x80, 0x09,
0x9d, 0xca, 0x5c, 0xbc, 0x20, 0x70, 0x75, 0xc0];
static CIPHERTEXT: &'static [u8] = &[
0x64, 0xa0, 0x86, 0x15, 0x75, 0x86, 0x1a, 0xf4,
0x60, 0xf0, 0x62, 0xc7, 0x9b, 0xe6, 0x43, 0xbd,
0x5e, 0x80, 0x5c, 0xfd, 0x34, 0x5c, 0xf3, 0x89,
0xf1, 0x08, 0x67, 0x0a, 0xc7, 0x6c, 0x8c, 0xb2,
0x4c, 0x6c, 0xfc, 0x18, 0x75, 0x5d, 0x43, 0xee,
0xa0, 0x9e, 0xe9, 0x4e, 0x38, 0x2d, 0x26, 0xb0,
0xbd, 0xb7, 0xb7, 0x3c, 0x32, 0x1b, 0x01, 0x00,
0xd4, 0xf0, 0x3b, 0x7f, 0x35, 0x58, 0x94, 0xcf,
0x33, 0x2f, 0x83, 0x0e, 0x71, 0x0b, 0x97, 0xce,
0x98, 0xc8, 0xa8, 0x4a, 0xbd, 0x0b, 0x94, 0x81,
0x14, 0xad, 0x17, 0x6e, 0x00, 0x8d, 0x33, 0xbd,
0x60, 0xf9, 0x82, 0xb1, 0xff, 0x37, 0xc8, 0x55,
0x97, 0x97, 0xa0, 0x6e, 0xf4, 0xf0, 0xef, 0x61,
0xc1, 0x86, 0x32, 0x4e, 0x2b, 0x35, 0x06, 0x38,
0x36, 0x06, 0x90, 0x7b, 0x6a, 0x7c, 0x02, 0xb0,
0xf9, 0xf6, 0x15, 0x7b, 0x53, 0xc8, 0x67, 0xe4,
0xb9, 0x16, 0x6c, 0x76, 0x7b, 0x80, 0x4d, 0x46,
0xa5, 0x9b, 0x52, 0x16, 0xcd, 0xe7, 0xa4, 0xe9,
0x90, 0x40, 0xc5, 0xa4, 0x04, 0x33, 0x22, 0x5e,
0xe2, 0x82, 0xa1, 0xb0, 0xa0, 0x6c, 0x52, 0x3e,
0xaf, 0x45, 0x34, 0xd7, 0xf8, 0x3f, 0xa1, 0x15,
0x5b, 0x00, 0x47, 0x71, 0x8c, 0xbc, 0x54, 0x6a,
0x0d, 0x07, 0x2b, 0x04, 0xb3, 0x56, 0x4e, 0xea,
0x1b, 0x42, 0x22, 0x73, 0xf5, 0x48, 0x27, 0x1a,
0x0b, 0xb2, 0x31, 0x60, 0x53, 0xfa, 0x76, 0x99,
0x19, 0x55, 0xeb, 0xd6, 0x31, 0x59, 0x43, 0x4e,
0xce, 0xbb, 0x4e, 0x46, 0x6d, 0xae, 0x5a, 0x10,
0x73, 0xa6, 0x72, 0x76, 0x27, 0x09, 0x7a, 0x10,
0x49, 0xe6, 0x17, 0xd9, 0x1d, 0x36, 0x10, 0x94,
0xfa, 0x68, 0xf0, 0xff, 0x77, 0x98, 0x71, 0x30,
0x30, 0x5b, 0xea, 0xba, 0x2e, 0xda, 0x04, 0xdf,
0x99, 0x7b, 0x71, 0x4d, 0x6c, 0x6f, 0x2c, 0x29,
0xa6, 0xad, 0x5c, 0xb4, 0x02, 0x2b, 0x02, 0x70,
0x9b];
static NONCE: &'static [u8] = &[0x00, 0x00, 0x00, 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08];
static AAD: &'static [u8] = &[0xf3, 0x33, 0x88, 0x86,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x4e, 0x91];
static TAG: &'static [u8] = &[
0xee, 0xad, 0x9d, 0x67, 0x89, 0x0c, 0xbb, 0x22,
0x39, 0x23, 0x36, 0xfe, 0xa1, 0x85, 0x1f, 0x38];
static PLAINTEXT: &'static str = "\
Internet-Drafts are draft documents valid for a maximum of six m\
onths and may be updated, replaced, or obsoleted by other docume\
nts at any time. It is inappropriate to use Internet-Drafts as r\
eference material or to cite them other than as /\u{201c}work in prog\
ress./\u{201d}";
}
#[cfg(all(feature = "bench", test))]
mod bench {
use test::{Bencher, black_box};
use super::*;
#[cfg_attr(feature = "clippy", allow(result_unwrap_used))]
fn bench_encrypt(b: &mut Bencher, aad: &[u8], data: &[u8]) {
let key = [!0; 32];
let nonce = [!0; 12];
let mut buf = Vec::with_capacity(data.len());
b.bytes = data.len() as u64;
b.iter(|| {
buf.clear();
encrypt(black_box(&key), black_box(&nonce),
black_box(aad), black_box(data),
black_box(&mut buf)).unwrap()
})
}
#[cfg_attr(feature = "clippy", allow(result_unwrap_used))]
fn bench_decrypt(b: &mut Bencher, aad: &[u8], data: &[u8]) {
let key = [!0; 32];
let nonce = [!0; 12];
let mut ciphertext = Vec::with_capacity(data.len());
let tag = encrypt(&key, &nonce, aad, data, &mut ciphertext).unwrap();
let input = &ciphertext[..];
let mut buf = Vec::with_capacity(data.len());
b.bytes = data.len() as u64;
b.iter(|| {
buf.clear();
decrypt(black_box(&key), black_box(&nonce),
black_box(aad), black_box(input), black_box(&tag),
black_box(&mut buf)).unwrap()
})
}
#[bench]
fn bench_encrypt_16(b: &mut Bencher) {
bench_encrypt(b, &[!0; 16], &[!0; 16])
}
#[bench]
fn bench_encrypt_4k(b: &mut Bencher) {
bench_encrypt(b, &[!0; 16], &[!0; 4096])
}
#[bench]
fn bench_encrypt_64k(b: &mut Bencher) {
bench_encrypt(b, &[!0; 16], &[!0; 65536])
}
#[bench]
fn bench_decrypt_16(b: &mut Bencher) {
bench_decrypt(b, &[!0; 16], &[!0; 16])
}
#[bench]
fn bench_decrypt_4k(b: &mut Bencher) {
bench_decrypt(b, &[!0; 16], &[!0; 4096])
}
#[bench]
fn bench_decrypt_64k(b: &mut Bencher) {
bench_decrypt(b, &[!0; 16], &[!0; 65536])
}
}

43
src/as_bytes.rs Normal file
View File

@@ -0,0 +1,43 @@
// Copyright 2016 chacha20-poly1305-aead Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use std::mem;
use std::slice;
pub unsafe trait Safe {}
pub trait AsBytes {
fn as_bytes(&self) -> &[u8];
fn as_mut_bytes(&mut self) -> &mut [u8];
}
impl<T: Safe> AsBytes for [T] {
#[inline]
fn as_bytes(&self) -> &[u8] {
unsafe {
slice::from_raw_parts(self.as_ptr() as *const u8,
self.len() * mem::size_of::<T>())
}
}
#[inline]
fn as_mut_bytes(&mut self) -> &mut [u8] {
unsafe {
slice::from_raw_parts_mut(self.as_mut_ptr() as *mut u8,
self.len() * mem::size_of::<T>())
}
}
}
unsafe impl Safe for u8 {}
unsafe impl Safe for u16 {}
unsafe impl Safe for u32 {}
unsafe impl Safe for u64 {}
unsafe impl Safe for i8 {}
unsafe impl Safe for i16 {}
unsafe impl Safe for i32 {}
unsafe impl Safe for i64 {}

250
src/chacha20.rs Normal file
View File

@@ -0,0 +1,250 @@
// Copyright 2016 chacha20-poly1305-aead Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use crate::as_bytes::AsBytes;
use crate::simd::{Vector4, u32x4};
#[derive(Clone, Debug)]
pub struct ChaCha20 {
state: [u32x4; 3]
}
#[cfg_attr(feature = "clippy", allow(should_implement_trait))]
impl ChaCha20 {
pub fn new(key: &[u8], nonce: &[u8]) -> Self {
Self::with_counter(key, nonce, 0)
}
pub fn with_counter(key: &[u8], nonce: &[u8], counter: u32) -> Self {
assert!(key.len() == 32);
assert!(nonce.len() == 12);
let mut k = [u32x4::default(); 2];
k.as_mut_bytes().clone_from_slice(key);
let mut n = [0; 3];
n.as_mut_bytes().clone_from_slice(nonce);
ChaCha20 {
state: [
k[0].from_le(),
k[1].from_le(),
u32x4::new(counter.to_le(), n[0], n[1], n[2]).from_le(),
]
}
}
fn round(state: &mut [u32x4; 4]) {
state[0] = state[0].wrapping_add(state[1]);
state[3] = (state[3] ^ state[0]).rotate_left_const(16);
state[2] = state[2].wrapping_add(state[3]);
state[1] = (state[1] ^ state[2]).rotate_left_const(12);
state[0] = state[0].wrapping_add(state[1]);
state[3] = (state[3] ^ state[0]).rotate_left_const(8);
state[2] = state[2].wrapping_add(state[3]);
state[1] = (state[1] ^ state[2]).rotate_left_const(7);
}
fn shuffle(state: &mut [u32x4; 4]) {
state[1] = state[1].shuffle_left_1();
state[2] = state[2].shuffle_left_2();
state[3] = state[3].shuffle_left_3();
}
fn unshuffle(state: &mut [u32x4; 4]) {
state[1] = state[1].shuffle_right_1();
state[2] = state[2].shuffle_right_2();
state[3] = state[3].shuffle_right_3();
}
fn round_pair(state: &mut [u32x4; 4]) {
ChaCha20::round(state);
ChaCha20::shuffle(state);
ChaCha20::round(state);
ChaCha20::unshuffle(state);
}
fn block(&self) -> [u32x4; 4] {
let c = u32x4::new(0x61707865, 0x3320646e, 0x79622d32, 0x6b206574);
let mut state = [c, self.state[0], self.state[1], self.state[2]];
ChaCha20::round_pair(&mut state);
ChaCha20::round_pair(&mut state);
ChaCha20::round_pair(&mut state);
ChaCha20::round_pair(&mut state);
ChaCha20::round_pair(&mut state);
ChaCha20::round_pair(&mut state);
ChaCha20::round_pair(&mut state);
ChaCha20::round_pair(&mut state);
ChaCha20::round_pair(&mut state);
ChaCha20::round_pair(&mut state);
[
state[0].wrapping_add(c).to_le(),
state[1].wrapping_add(self.state[0]).to_le(),
state[2].wrapping_add(self.state[1]).to_le(),
state[3].wrapping_add(self.state[2]).to_le(),
]
}
pub fn next(&mut self) -> [u32x4; 4] {
let block = self.block();
self.state[2].0 = self.state[2].0.wrapping_add(1);
block
}
}
/// Runs the self-test for the chacha20 block function.
#[cold]
pub fn selftest() {
let key = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f];
let nonce = [0x00, 0x00, 0x00, 0x09,
0x00, 0x00, 0x00, 0x4a,
0x00, 0x00, 0x00, 0x00];
let expected = [0x10, 0xf1, 0xe7, 0xe4, 0xd1, 0x3b, 0x59, 0x15,
0x50, 0x0f, 0xdd, 0x1f, 0xa3, 0x20, 0x71, 0xc4,
0xc7, 0xd1, 0xf4, 0xc7, 0x33, 0xc0, 0x68, 0x03,
0x04, 0x22, 0xaa, 0x9a, 0xc3, 0xd4, 0x6c, 0x4e,
0xd2, 0x82, 0x64, 0x46, 0x07, 0x9f, 0xaa, 0x09,
0x14, 0xc2, 0xd7, 0x05, 0xd9, 0x8b, 0x02, 0xa2,
0xb5, 0x12, 0x9c, 0xd1, 0xde, 0x16, 0x4e, 0xb9,
0xcb, 0xd0, 0x83, 0xe8, 0xa2, 0x50, 0x3c, 0x4e];
let mut state = ChaCha20::with_counter(&key, &nonce, 1);
let block = state.next();
assert_eq!(block.as_bytes(), &expected[..]);
}
#[cfg(test)]
mod tests {
use as_bytes::AsBytes;
use super::ChaCha20;
#[test]
fn selftest() {
super::selftest();
}
#[test]
fn test_vector_1_and_2() {
let mut state = ChaCha20::new(&[0; 32], &[0; 12]);
assert_eq!(state.next().as_bytes(),
&[0x76, 0xb8, 0xe0, 0xad, 0xa0, 0xf1, 0x3d, 0x90,
0x40, 0x5d, 0x6a, 0xe5, 0x53, 0x86, 0xbd, 0x28,
0xbd, 0xd2, 0x19, 0xb8, 0xa0, 0x8d, 0xed, 0x1a,
0xa8, 0x36, 0xef, 0xcc, 0x8b, 0x77, 0x0d, 0xc7,
0xda, 0x41, 0x59, 0x7c, 0x51, 0x57, 0x48, 0x8d,
0x77, 0x24, 0xe0, 0x3f, 0xb8, 0xd8, 0x4a, 0x37,
0x6a, 0x43, 0xb8, 0xf4, 0x15, 0x18, 0xa1, 0x1c,
0xc3, 0x87, 0xb6, 0x69, 0xb2, 0xee, 0x65, 0x86][..]);
assert_eq!(state.next().as_bytes(),
&[0x9f, 0x07, 0xe7, 0xbe, 0x55, 0x51, 0x38, 0x7a,
0x98, 0xba, 0x97, 0x7c, 0x73, 0x2d, 0x08, 0x0d,
0xcb, 0x0f, 0x29, 0xa0, 0x48, 0xe3, 0x65, 0x69,
0x12, 0xc6, 0x53, 0x3e, 0x32, 0xee, 0x7a, 0xed,
0x29, 0xb7, 0x21, 0x76, 0x9c, 0xe6, 0x4e, 0x43,
0xd5, 0x71, 0x33, 0xb0, 0x74, 0xd8, 0x39, 0xd5,
0x31, 0xed, 0x1f, 0x28, 0x51, 0x0a, 0xfb, 0x45,
0xac, 0xe1, 0x0a, 0x1f, 0x4b, 0x79, 0x4d, 0x6f][..]);
}
#[test]
fn test_vector_3() {
let key = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01];
let mut state = ChaCha20::with_counter(&key, &[0; 12], 1);
assert_eq!(state.next().as_bytes(),
&[0x3a, 0xeb, 0x52, 0x24, 0xec, 0xf8, 0x49, 0x92,
0x9b, 0x9d, 0x82, 0x8d, 0xb1, 0xce, 0xd4, 0xdd,
0x83, 0x20, 0x25, 0xe8, 0x01, 0x8b, 0x81, 0x60,
0xb8, 0x22, 0x84, 0xf3, 0xc9, 0x49, 0xaa, 0x5a,
0x8e, 0xca, 0x00, 0xbb, 0xb4, 0xa7, 0x3b, 0xda,
0xd1, 0x92, 0xb5, 0xc4, 0x2f, 0x73, 0xf2, 0xfd,
0x4e, 0x27, 0x36, 0x44, 0xc8, 0xb3, 0x61, 0x25,
0xa6, 0x4a, 0xdd, 0xeb, 0x00, 0x6c, 0x13, 0xa0][..]);
}
#[test]
fn test_vector_4() {
let key = [0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];
let mut state = ChaCha20::with_counter(&key, &[0; 12], 2);
assert_eq!(state.next().as_bytes(),
&[0x72, 0xd5, 0x4d, 0xfb, 0xf1, 0x2e, 0xc4, 0x4b,
0x36, 0x26, 0x92, 0xdf, 0x94, 0x13, 0x7f, 0x32,
0x8f, 0xea, 0x8d, 0xa7, 0x39, 0x90, 0x26, 0x5e,
0xc1, 0xbb, 0xbe, 0xa1, 0xae, 0x9a, 0xf0, 0xca,
0x13, 0xb2, 0x5a, 0xa2, 0x6c, 0xb4, 0xa6, 0x48,
0xcb, 0x9b, 0x9d, 0x1b, 0xe6, 0x5b, 0x2c, 0x09,
0x24, 0xa6, 0x6c, 0x54, 0xd5, 0x45, 0xec, 0x1b,
0x73, 0x74, 0xf4, 0x87, 0x2e, 0x99, 0xf0, 0x96][..]);
}
#[test]
fn test_vector_5() {
let nonce = [0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x02];
let mut state = ChaCha20::with_counter(&[0; 32], &nonce, 0);
assert_eq!(state.next().as_bytes(),
&[0xc2, 0xc6, 0x4d, 0x37, 0x8c, 0xd5, 0x36, 0x37,
0x4a, 0xe2, 0x04, 0xb9, 0xef, 0x93, 0x3f, 0xcd,
0x1a, 0x8b, 0x22, 0x88, 0xb3, 0xdf, 0xa4, 0x96,
0x72, 0xab, 0x76, 0x5b, 0x54, 0xee, 0x27, 0xc7,
0x8a, 0x97, 0x0e, 0x0e, 0x95, 0x5c, 0x14, 0xf3,
0xa8, 0x8e, 0x74, 0x1b, 0x97, 0xc2, 0x86, 0xf7,
0x5f, 0x8f, 0xc2, 0x99, 0xe8, 0x14, 0x83, 0x62,
0xfa, 0x19, 0x8a, 0x39, 0x53, 0x1b, 0xed, 0x6d][..]);
}
}
#[cfg(all(feature = "bench", test))]
mod bench {
use test::{Bencher, black_box};
use super::ChaCha20;
#[bench]
fn bench_new(b: &mut Bencher) {
let key = [!0; 32];
let nonce = [!0; 12];
let mut counter = 0;
b.bytes = 48;
b.iter(|| {
counter += 1;
ChaCha20::with_counter(black_box(&key), black_box(&nonce), counter)
})
}
#[bench]
fn bench_block(b: &mut Bencher) {
let mut state = ChaCha20::new(&[!0; 32], &[!0; 12]);
b.bytes = 64;
b.iter(|| {
state.next()
})
}
}

60
src/lib.rs Normal file
View File

@@ -0,0 +1,60 @@
// Copyright 2016 chacha20-poly1305-aead Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! A pure Rust implementation of the ChaCha20-Poly1305 AEAD from RFC 7539.
//!
//! An Authenticated Encryption with Associated Data (AEAD) mode
//! encrypts data and generates an authentication tag, or decrypts data
//! and verifies an authentication tag, as a single operation. The tag
//! can also validate additional authenticated data (AAD) which is not
//! included in the cyphertext, for instance a plaintext header.
//!
//! The ChaCha20-Poly1305 AEAD uses a 256-bit (32-byte) key, and a
//! 96-bit (12-byte) nonce. For each key, a given nonce should be used
//! only once, otherwise the encryption and authentication can be
//! broken. One way to prevent reuse is for the nonce to contain a
//! sequence number.
//!
//! The amount of data that can be encrypted in a single call is 2^32 - 1
//! blocks of 64 bytes, slightly less than 256 GiB.
#![warn(missing_docs)]
#![cfg_attr(feature = "clippy", feature(plugin))]
#![cfg_attr(feature = "clippy", plugin(clippy))]
#![cfg_attr(feature = "clippy", warn(clippy_pedantic))]
#![cfg_attr(all(feature = "bench", test), feature(test))]
#![cfg_attr(feature = "simd", feature(platform_intrinsics, repr_simd))]
#![cfg_attr(feature = "simd_opt", feature(cfg_target_feature))]
#[cfg(all(feature = "bench", test))]
extern crate test;
extern crate constant_time_eq;
mod as_bytes;
mod simdty;
mod simdint;
mod simdop;
mod simd_opt;
mod simd;
mod chacha20;
mod poly1305;
mod aead;
pub use aead::{DecryptError, decrypt, encrypt, encrypt_read};
/// Runs the self-test for ChaCha20, Poly1305, and the AEAD.
#[cold]
pub fn selftest() {
chacha20::selftest();
poly1305::selftest();
aead::selftest::selftest();
}

536
src/poly1305.rs Normal file
View File

@@ -0,0 +1,536 @@
// Copyright 2016 chacha20-poly1305-aead Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
// The 130-bit accumulator is split into five 26-bit limbs, with the
// carry between the limbs delayed.
//
// The reduction steps use the following identity:
//
// a×2^n ≡ a×c (mod 2^nc)
//
// For Poly1305, the identity becomes:
//
// a×2^130 ≡ a×5 (mod 2^1305)
//
// That is, any limb or carry above 2^130 is multiplied by 5 and added
// back to the lower limbs.
//
// Based on the algorithm from https://github.com/floodyberry/poly1305-donna
#[derive(Clone, Debug)]
pub struct Poly1305 {
/// Accumulator: 5x26-bit
a: [u32; 5],
/// Multiplier: 5x26-bit
r: [u32; 5],
/// Secret key: 4x32-bit
s: [u32; 4],
}
impl Poly1305 {
pub fn new(key: &[u8]) -> Self {
assert!(key.len() == 32);
Poly1305 {
a: [0; 5],
// r &= 0x0ffffffc_0ffffffc_0ffffffc_0fffffff;
r: [u32_from_le(&key[ 0.. 4]) & 0x03ffffff,
u32_from_le(&key[ 3.. 7]) >> 2 & 0x03ffff03,
u32_from_le(&key[ 6..10]) >> 4 & 0x03ffc0ff,
u32_from_le(&key[ 9..13]) >> 6 & 0x03f03fff,
u32_from_le(&key[12..16]) >> 8 & 0x000fffff],
s: [u32_from_le(&key[16..20]),
u32_from_le(&key[20..24]),
u32_from_le(&key[24..28]),
u32_from_le(&key[28..32])],
}
}
pub fn block(&mut self, msg: &[u8]) {
assert!(msg.len() == 16);
self.accumulate(u32_from_le(&msg[ 0.. 4]) & 0x03ffffff,
u32_from_le(&msg[ 3.. 7]) >> 2 & 0x03ffffff,
u32_from_le(&msg[ 6..10]) >> 4 & 0x03ffffff,
u32_from_le(&msg[ 9..13]) >> 6 & 0x03ffffff,
u32_from_le(&msg[12..16]) >> 8 | (1 << 24));
}
pub fn last_block(mut self, msg: &[u8]) -> [u32; 4] {
if !msg.is_empty() {
assert!(msg.len() <= 16);
let mut buf = [0; 17];
buf[..msg.len()].clone_from_slice(msg);
buf[msg.len()] = 1;
self.accumulate(u32_from_le(&buf[ 0.. 4]) & 0x03ffffff,
u32_from_le(&buf[ 3.. 7]) >> 2 & 0x03ffffff,
u32_from_le(&buf[ 6..10]) >> 4 & 0x03ffffff,
u32_from_le(&buf[ 9..13]) >> 6 & 0x03ffffff,
u32_from_le(&buf[13..17]));
}
self.tag()
}
fn padded_block(&mut self, msg: &[u8]) {
assert!(msg.len() <= 16);
let mut buf = [0; 16];
buf[..msg.len()].clone_from_slice(msg);
self.block(&buf);
}
pub fn padded_blocks(&mut self, mut msg: &[u8]) {
while msg.len() >= 16 {
self.block(&msg[..16]);
msg = &msg[16..];
}
if !msg.is_empty() {
self.padded_block(msg);
}
}
fn accumulate(&mut self, n0: u32, n1: u32, n2: u32, n3: u32, n4: u32) {
self.a[0] += n0;
self.a[1] += n1;
self.a[2] += n2;
self.a[3] += n3;
self.a[4] += n4;
self.mul_r_mod_p();
}
#[cfg_attr(feature = "clippy", allow(cast_possible_truncation))]
fn mul_r_mod_p(&mut self) {
// t = r * a; high limbs multiplied by 5 and added to low limbs
let mut t = [0; 5];
t[0] += self.r[0] as u64 * self.a[0] as u64;
t[1] += self.r[0] as u64 * self.a[1] as u64;
t[2] += self.r[0] as u64 * self.a[2] as u64;
t[3] += self.r[0] as u64 * self.a[3] as u64;
t[4] += self.r[0] as u64 * self.a[4] as u64;
t[0] += (5 * self.r[1]) as u64 * self.a[4] as u64;
t[1] += self.r[1] as u64 * self.a[0] as u64;
t[2] += self.r[1] as u64 * self.a[1] as u64;
t[3] += self.r[1] as u64 * self.a[2] as u64;
t[4] += self.r[1] as u64 * self.a[3] as u64;
t[0] += (5 * self.r[2]) as u64 * self.a[3] as u64;
t[1] += (5 * self.r[2]) as u64 * self.a[4] as u64;
t[2] += self.r[2] as u64 * self.a[0] as u64;
t[3] += self.r[2] as u64 * self.a[1] as u64;
t[4] += self.r[2] as u64 * self.a[2] as u64;
t[0] += (5 * self.r[3]) as u64 * self.a[2] as u64;
t[1] += (5 * self.r[3]) as u64 * self.a[3] as u64;
t[2] += (5 * self.r[3]) as u64 * self.a[4] as u64;
t[3] += self.r[3] as u64 * self.a[0] as u64;
t[4] += self.r[3] as u64 * self.a[1] as u64;
t[0] += (5 * self.r[4]) as u64 * self.a[1] as u64;
t[1] += (5 * self.r[4]) as u64 * self.a[2] as u64;
t[2] += (5 * self.r[4]) as u64 * self.a[3] as u64;
t[3] += (5 * self.r[4]) as u64 * self.a[4] as u64;
t[4] += self.r[4] as u64 * self.a[0] as u64;
// propagate carries
t[1] += t[0] >> 26;
t[2] += t[1] >> 26;
t[3] += t[2] >> 26;
t[4] += t[3] >> 26;
// mask out carries
self.a[0] = t[0] as u32 & 0x03ffffff;
self.a[1] = t[1] as u32 & 0x03ffffff;
self.a[2] = t[2] as u32 & 0x03ffffff;
self.a[3] = t[3] as u32 & 0x03ffffff;
self.a[4] = t[4] as u32 & 0x03ffffff;
// propagate high limb carry
self.a[0] += (t[4] >> 26) as u32 * 5;
self.a[1] += self.a[0] >> 26;
// mask out carries
self.a[0] &= 0x03ffffff;
// A carry of at most 1 bit has been left in self.a[1]
}
fn propagate_carries(&mut self) {
// propagate carries
self.a[2] += self.a[1] >> 26;
self.a[3] += self.a[2] >> 26;
self.a[4] += self.a[3] >> 26;
self.a[0] += (self.a[4] >> 26) * 5;
self.a[1] += self.a[0] >> 26;
// mask out carries
self.a[0] &= 0x03ffffff;
self.a[1] &= 0x03ffffff;
self.a[2] &= 0x03ffffff;
self.a[3] &= 0x03ffffff;
self.a[4] &= 0x03ffffff;
}
fn reduce_mod_p(&mut self) {
self.propagate_carries();
let mut t = self.a;
// t = a - p
t[0] += 5;
t[4] = t[4].wrapping_sub(1 << 26);
// propagate carries
t[1] += t[0] >> 26;
t[2] += t[1] >> 26;
t[3] += t[2] >> 26;
t[4] = t[4].wrapping_add(t[3] >> 26);
// mask out carries
t[0] &= 0x03ffffff;
t[1] &= 0x03ffffff;
t[2] &= 0x03ffffff;
t[3] &= 0x03ffffff;
// constant-time select between (a - p) if non-negative, (a) otherwise
let mask = (t[4] >> 31).wrapping_sub(1);
self.a[0] = t[0] & mask | self.a[0] & !mask;
self.a[1] = t[1] & mask | self.a[1] & !mask;
self.a[2] = t[2] & mask | self.a[2] & !mask;
self.a[3] = t[3] & mask | self.a[3] & !mask;
self.a[4] = t[4] & mask | self.a[4] & !mask;
}
#[cfg_attr(feature = "clippy", allow(cast_possible_truncation))]
pub fn tag(mut self) -> [u32; 4] {
self.reduce_mod_p();
// convert from 5x26-bit to 4x32-bit
let a = [self.a[0] | self.a[1] << 26,
self.a[1] >> 6 | self.a[2] << 20,
self.a[2] >> 12 | self.a[3] << 14,
self.a[3] >> 18 | self.a[4] << 8];
// t = a + s
let mut t = [a[0] as u64 + self.s[0] as u64,
a[1] as u64 + self.s[1] as u64,
a[2] as u64 + self.s[2] as u64,
a[3] as u64 + self.s[3] as u64];
// propagate carries
t[1] += t[0] >> 32;
t[2] += t[1] >> 32;
t[3] += t[2] >> 32;
// mask out carries
[(t[0] as u32).to_le(),
(t[1] as u32).to_le(),
(t[2] as u32).to_le(),
(t[3] as u32).to_le()]
}
}
#[inline]
fn u32_from_le(src: &[u8]) -> u32 {
use std::mem::size_of;
use std::ptr::copy_nonoverlapping;
assert!(src.len() == size_of::<u32>());
unsafe {
let mut value = 0;
copy_nonoverlapping(src.as_ptr(),
&mut value as *mut u32 as *mut u8,
size_of::<u32>());
u32::from_le(value)
}
}
/// Runs the self-test for the poly1305 authenticator.
#[cold]
pub fn selftest() {
use crate::as_bytes::AsBytes;
let key = [0x85, 0xd6, 0xbe, 0x78, 0x57, 0x55, 0x6d, 0x33,
0x7f, 0x44, 0x52, 0xfe, 0x42, 0xd5, 0x06, 0xa8,
0x01, 0x03, 0x80, 0x8a, 0xfb, 0x0d, 0xb2, 0xfd,
0x4a, 0xbf, 0xf6, 0xaf, 0x41, 0x49, 0xf5, 0x1b];
let msg = b"Cryptographic Forum Research Group";
let expected = [0xa8, 0x06, 0x1d, 0xc1, 0x30, 0x51, 0x36, 0xc6,
0xc2, 0x2b, 0x8b, 0xaf, 0x0c, 0x01, 0x27, 0xa9];
let mut state = Poly1305::new(&key);
state.block(&msg[ 0..16]);
state.block(&msg[16..32]);
let tag = state.last_block(&msg[32..]);
assert_eq!(tag.as_bytes(), expected);
}
#[cfg(test)]
mod tests {
use as_bytes::AsBytes;
use super::Poly1305;
#[test]
fn selftest() {
super::selftest();
}
#[test]
fn test_vector_1() {
let mut state = Poly1305::new(&[0; 32]);
state.block(&[0; 16]);
state.block(&[0; 16]);
state.block(&[0; 16]);
state.block(&[0; 16]);
assert_eq!(state.tag().as_bytes(), &[0; 16]);
}
static TEXT: &'static [u8] = b"\
Any submission to the IETF intended by the Contributor for publi\
cation as all or part of an IETF Internet-Draft or RFC and any s\
tatement made within the context of an IETF activity is consider\
ed an \"IETF Contribution\". Such statements include oral statemen\
ts in IETF sessions, as well as written and electronic communica\
tions made at any time or place, which are addressed to";
#[test]
fn test_vector_2() {
let key = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x36, 0xe5, 0xf6, 0xb5, 0xc5, 0xe0, 0x60, 0x70,
0xf0, 0xef, 0xca, 0x96, 0x22, 0x7a, 0x86, 0x3e];
let mut msg = TEXT;
let mut state = Poly1305::new(&key);
while msg.len() >= 16 {
state.block(&msg[..16]);
msg = &msg[16..];
}
let tag = state.last_block(msg);
assert_eq!(tag.as_bytes(),
&[0x36, 0xe5, 0xf6, 0xb5, 0xc5, 0xe0, 0x60, 0x70,
0xf0, 0xef, 0xca, 0x96, 0x22, 0x7a, 0x86, 0x3e]);
}
#[test]
fn test_vector_3() {
let key = [0x36, 0xe5, 0xf6, 0xb5, 0xc5, 0xe0, 0x60, 0x70,
0xf0, 0xef, 0xca, 0x96, 0x22, 0x7a, 0x86, 0x3e,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];
let mut msg = TEXT;
let mut state = Poly1305::new(&key);
while msg.len() >= 16 {
state.block(&msg[..16]);
msg = &msg[16..];
}
let tag = state.last_block(msg);
assert_eq!(tag.as_bytes(),
&[0xf3, 0x47, 0x7e, 0x7c, 0xd9, 0x54, 0x17, 0xaf,
0x89, 0xa6, 0xb8, 0x79, 0x4c, 0x31, 0x0c, 0xf0]);
}
#[test]
fn test_vector_4() {
let key = [0x1c, 0x92, 0x40, 0xa5, 0xeb, 0x55, 0xd3, 0x8a,
0xf3, 0x33, 0x88, 0x86, 0x04, 0xf6, 0xb5, 0xf0,
0x47, 0x39, 0x17, 0xc1, 0x40, 0x2b, 0x80, 0x09,
0x9d, 0xca, 0x5c, 0xbc, 0x20, 0x70, 0x75, 0xc0];
let mut msg: &[u8] = b"\
'Twas brillig, and the slithy toves\nDid gyre and gimble in the w\
abe:\nAll mimsy were the borogoves,\nAnd the mome raths outgrabe.";
let mut state = Poly1305::new(&key);
while msg.len() >= 16 {
state.block(&msg[..16]);
msg = &msg[16..];
}
let tag = state.last_block(msg);
assert_eq!(tag.as_bytes(),
&[0x45, 0x41, 0x66, 0x9a, 0x7e, 0xaa, 0xee, 0x61,
0xe7, 0x08, 0xdc, 0x7c, 0xbc, 0xc5, 0xeb, 0x62]);
}
#[test]
fn test_vector_5() {
let key = [0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];
let mut state = Poly1305::new(&key);
state.block(&[0xff; 16]);
assert_eq!(state.tag().as_bytes(),
&[0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
}
#[test]
fn test_vector_6() {
let key = [0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff];
let mut state = Poly1305::new(&key);
state.block(&[0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
assert_eq!(state.tag().as_bytes(),
&[0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
}
#[test]
fn test_vector_7() {
let key = [0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];
let mut state = Poly1305::new(&key);
state.block(&[0xff; 16]);
state.block(&[0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff]);
state.block(&[0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
assert_eq!(state.tag().as_bytes(),
&[0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
}
#[test]
fn test_vector_8() {
let key = [0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];
let mut state = Poly1305::new(&key);
state.block(&[0xff; 16]);
state.block(&[0xfb, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe,
0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe]);
state.block(&[0x01; 16]);
assert_eq!(state.tag().as_bytes(), &[0; 16]);
}
#[test]
fn test_vector_9() {
let key = [0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];
let mut state = Poly1305::new(&key);
state.block(&[0xfd, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff]);
assert_eq!(state.tag().as_bytes(),
&[0xfa, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff]);
}
#[test]
fn test_vector_10() {
let key = [0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];
let mut state = Poly1305::new(&key);
state.block(&[0xe3, 0x35, 0x94, 0xd7, 0x50, 0x5e, 0x43, 0xb9,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
state.block(&[0x33, 0x94, 0xd7, 0x50, 0x5e, 0x43, 0x79, 0xcd,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
state.block(&[0; 16]);
state.block(&[0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
assert_eq!(state.tag().as_bytes(),
&[0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x55, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
}
#[test]
fn test_vector_11() {
let key = [0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];
let mut state = Poly1305::new(&key);
state.block(&[0xe3, 0x35, 0x94, 0xd7, 0x50, 0x5e, 0x43, 0xb9,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
state.block(&[0x33, 0x94, 0xd7, 0x50, 0x5e, 0x43, 0x79, 0xcd,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
state.block(&[0; 16]);
assert_eq!(state.tag().as_bytes(),
&[0x13, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
}
}
#[cfg(all(feature = "bench", test))]
mod bench {
use test::{Bencher, black_box};
use super::Poly1305;
#[bench]
fn bench_new(b: &mut Bencher) {
let key = [!0; 32];
b.bytes = 32;
b.iter(|| {
Poly1305::new(black_box(&key))
})
}
#[bench]
fn bench_block(b: &mut Bencher) {
let mut state = Poly1305::new(&[!0; 32]);
let msg = [!0; 16];
b.bytes = 16;
b.iter(|| {
black_box(&mut state).block(black_box(&msg))
})
}
#[bench]
fn bench_last_block(b: &mut Bencher) {
let state = Poly1305::new(&[!0; 32]);
let msg = [!0; 16];
b.bytes = 16;
b.iter(|| {
black_box(&state).clone().last_block(black_box(&msg))
})
}
#[bench]
fn bench_tag(b: &mut Bencher) {
let state = Poly1305::new(&[!0; 32]);
b.bytes = 16;
b.iter(|| {
black_box(&state).clone().tag()
})
}
}

110
src/simd.rs Normal file
View File

@@ -0,0 +1,110 @@
// Copyright 2015 chacha20-poly1305-aead Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#![cfg_attr(feature = "clippy", allow(inline_always))]
use crate::simd_opt;
pub use crate::simdty::u32x4;
pub trait Vector4<T>: Copy {
fn from_le(self) -> Self;
fn to_le(self) -> Self;
fn wrapping_add(self, rhs: Self) -> Self;
fn rotate_left_const(self, n: u32) -> Self;
fn shuffle_left_1(self) -> Self;
fn shuffle_left_2(self) -> Self;
fn shuffle_left_3(self) -> Self;
#[inline(always)] fn shuffle_right_1(self) -> Self { self.shuffle_left_3() }
#[inline(always)] fn shuffle_right_2(self) -> Self { self.shuffle_left_2() }
#[inline(always)] fn shuffle_right_3(self) -> Self { self.shuffle_left_1() }
}
macro_rules! impl_vector4 {
($vec:ident, $word:ident) => {
impl Vector4<$word> for $vec {
#[cfg(target_endian = "little")]
#[inline(always)]
fn from_le(self) -> Self { self }
#[cfg(not(target_endian = "little"))]
#[inline(always)]
fn from_le(self) -> Self {
$vec::new($word::from_le(self.0),
$word::from_le(self.1),
$word::from_le(self.2),
$word::from_le(self.3))
}
#[cfg(target_endian = "little")]
#[inline(always)]
fn to_le(self) -> Self { self }
#[cfg(not(target_endian = "little"))]
#[inline(always)]
fn to_le(self) -> Self {
$vec::new(self.0.to_le(),
self.1.to_le(),
self.2.to_le(),
self.3.to_le())
}
#[inline(always)]
fn wrapping_add(self, rhs: Self) -> Self { self + rhs }
#[inline(always)]
fn rotate_left_const(self, n: u32) -> Self {
simd_opt::$vec::rotate_left_const(self, n)
}
#[cfg(feature = "simd")]
#[inline(always)]
fn shuffle_left_1(self) -> Self {
use simdint::simd_shuffle4;
unsafe { simd_shuffle4(self, self, [1, 2, 3, 0]) }
}
#[cfg(not(feature = "simd"))]
#[inline(always)]
fn shuffle_left_1(self) -> Self {
$vec::new(self.1, self.2, self.3, self.0)
}
#[cfg(feature = "simd")]
#[inline(always)]
fn shuffle_left_2(self) -> Self {
use simdint::simd_shuffle4;
unsafe { simd_shuffle4(self, self, [2, 3, 0, 1]) }
}
#[cfg(not(feature = "simd"))]
#[inline(always)]
fn shuffle_left_2(self) -> Self {
$vec::new(self.2, self.3, self.0, self.1)
}
#[cfg(feature = "simd")]
#[inline(always)]
fn shuffle_left_3(self) -> Self {
use simdint::simd_shuffle4;
unsafe { simd_shuffle4(self, self, [3, 0, 1, 2]) }
}
#[cfg(not(feature = "simd"))]
#[inline(always)]
fn shuffle_left_3(self) -> Self {
$vec::new(self.3, self.0, self.1, self.2)
}
}
}
}
impl_vector4!(u32x4, u32);

44
src/simd_opt/mod.rs Normal file
View File

@@ -0,0 +1,44 @@
// Copyright 2015 chacha20-poly1305-aead Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#![cfg_attr(feature = "clippy", allow(inline_always))]
#[cfg(feature = "simd")]
macro_rules! transmute_shuffle {
($tmp:ident, $shuffle:ident, $vec:expr, $idx:expr) => {
unsafe {
use simdty::$tmp;
use simdint::$shuffle;
use std::mem::transmute;
let tmp_i: $tmp = transmute($vec);
let tmp_o: $tmp = $shuffle(tmp_i, tmp_i, $idx);
transmute(tmp_o)
}
}
}
#[cfg(feature = "simd")] pub mod u32x4;
#[cfg(not(feature = "simd"))]
macro_rules! simd_opt {
($vec:ident) => {
pub mod $vec {
use crate::simdty::$vec;
#[inline(always)]
pub fn rotate_left_const(vec: $vec, n: u32) -> $vec {
$vec::new(vec.0.rotate_left(n),
vec.1.rotate_left(n),
vec.2.rotate_left(n),
vec.3.rotate_left(n))
}
}
}
}
#[cfg(not(feature = "simd"))] simd_opt!(u32x4);

71
src/simd_opt/u32x4.rs Normal file
View File

@@ -0,0 +1,71 @@
// Copyright 2015 chacha20-poly1305-aead Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#![cfg_attr(feature = "clippy", allow(inline_always))]
use crate::simdty::u32x4;
#[cfg(feature = "simd_opt")]
#[inline(always)]
pub fn rotate_left_const(vec: u32x4, n: u32) -> u32x4 {
match n {
16 => rotate_left_16(vec),
8 => rotate_left_8(vec),
_ => rotate_left_any(vec, n),
}
}
#[cfg(not(feature = "simd_opt"))]
#[inline(always)]
pub fn rotate_left_const(vec: u32x4, n: u32) -> u32x4 {
rotate_left_any(vec, n)
}
#[inline(always)]
fn rotate_left_any(vec: u32x4, n: u32) -> u32x4 {
let l = n as u32;
let r = 32 - l;
(vec << u32x4::new(l, l, l, l)) ^ (vec >> u32x4::new(r, r, r, r))
}
#[cfg(feature = "simd_opt")]
#[inline(always)]
fn rotate_left_16(vec: u32x4) -> u32x4 {
if cfg!(target_feature = "ssse3") {
// pshufb (SSSE3) / vpshufb (AVX2)
transmute_shuffle!(u8x16, simd_shuffle16, vec,
[ 2, 3, 0, 1,
6, 7, 4, 5,
10, 11, 8, 9,
14, 15, 12, 13])
} else if cfg!(any(target_feature = "sse2", target_feature = "neon")) {
// pshuflw+pshufhw (SSE2) / vrev (NEON)
transmute_shuffle!(u16x8, simd_shuffle8, vec,
[1, 0,
3, 2,
5, 4,
7, 6])
} else {
rotate_left_any(vec, 16)
}
}
#[cfg(feature = "simd_opt")]
#[inline(always)]
fn rotate_left_8(vec: u32x4) -> u32x4 {
if cfg!(target_feature = "ssse3") {
// pshufb (SSSE3) / vpshufb (AVX2)
transmute_shuffle!(u8x16, simd_shuffle16, vec,
[ 3, 0, 1, 2,
7, 4, 5, 6,
11, 8, 9, 10,
15, 12, 13, 14])
} else {
rotate_left_any(vec, 8)
}
}

20
src/simdint.rs Normal file
View File

@@ -0,0 +1,20 @@
// Copyright 2015 chacha20-poly1305-aead Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#![allow(dead_code)]
#[cfg(feature = "simd")]
extern "platform-intrinsic" {
pub fn simd_add<T>(x: T, y: T) -> T;
pub fn simd_shl<T>(x: T, y: T) -> T;
pub fn simd_shr<T>(x: T, y: T) -> T;
pub fn simd_xor<T>(x: T, y: T) -> T;
pub fn simd_shuffle4<T, U>(v: T, w: T, idx: [u32; 4]) -> U;
pub fn simd_shuffle8<T, U>(v: T, w: T, idx: [u32; 8]) -> U;
pub fn simd_shuffle16<T, U>(v: T, w: T, idx: [u32; 16]) -> U;
}

93
src/simdop.rs Normal file
View File

@@ -0,0 +1,93 @@
// Copyright 2015 chacha20-poly1305-aead Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use crate::simdty::u32x4;
#[cfg(feature = "simd")] use crate::simdint;
use std::ops::{Add, BitXor, Shl, Shr};
macro_rules! impl_ops {
($vec:ident) => {
impl Add for $vec {
type Output = Self;
#[cfg(feature = "simd")]
#[inline(always)]
fn add(self, rhs: Self) -> Self::Output {
unsafe { simdint::simd_add(self, rhs) }
}
#[cfg(not(feature = "simd"))]
#[inline(always)]
fn add(self, rhs: Self) -> Self::Output {
$vec::new(self.0.wrapping_add(rhs.0),
self.1.wrapping_add(rhs.1),
self.2.wrapping_add(rhs.2),
self.3.wrapping_add(rhs.3))
}
}
impl BitXor for $vec {
type Output = Self;
#[cfg(feature = "simd")]
#[inline(always)]
fn bitxor(self, rhs: Self) -> Self::Output {
unsafe { simdint::simd_xor(self, rhs) }
}
#[cfg(not(feature = "simd"))]
#[inline(always)]
fn bitxor(self, rhs: Self) -> Self::Output {
$vec::new(self.0 ^ rhs.0,
self.1 ^ rhs.1,
self.2 ^ rhs.2,
self.3 ^ rhs.3)
}
}
impl Shl<$vec> for $vec {
type Output = Self;
#[cfg(feature = "simd")]
#[inline(always)]
fn shl(self, rhs: Self) -> Self::Output {
unsafe { simdint::simd_shl(self, rhs) }
}
#[cfg(not(feature = "simd"))]
#[inline(always)]
fn shl(self, rhs: Self) -> Self::Output {
$vec::new(self.0 << rhs.0,
self.1 << rhs.1,
self.2 << rhs.2,
self.3 << rhs.3)
}
}
impl Shr<$vec> for $vec {
type Output = Self;
#[cfg(feature = "simd")]
#[inline(always)]
fn shr(self, rhs: Self) -> Self::Output {
unsafe { simdint::simd_shr(self, rhs) }
}
#[cfg(not(feature = "simd"))]
#[inline(always)]
fn shr(self, rhs: Self) -> Self::Output {
$vec::new(self.0 >> rhs.0,
self.1 >> rhs.1,
self.2 >> rhs.2,
self.3 >> rhs.3)
}
}
}
}
impl_ops!(u32x4);

59
src/simdty.rs Normal file
View File

@@ -0,0 +1,59 @@
// Copyright 2016 chacha20-poly1305-aead Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#![allow(dead_code)]
#![allow(non_camel_case_types)]
use crate::as_bytes::Safe;
#[cfg(feature = "simd")]
macro_rules! decl_simd {
($($decl:item)*) => {
$(
#[derive(Clone, Copy, Debug, Default)]
#[repr(simd)]
$decl
)*
}
}
#[cfg(not(feature = "simd"))]
macro_rules! decl_simd {
($($decl:item)*) => {
$(
#[derive(Clone, Copy, Debug, Default)]
#[repr(C)]
$decl
)*
}
}
decl_simd! {
pub struct Simd4<T>(pub T, pub T, pub T, pub T);
pub struct Simd8<T>(pub T, pub T, pub T, pub T,
pub T, pub T, pub T, pub T);
pub struct Simd16<T>(pub T, pub T, pub T, pub T,
pub T, pub T, pub T, pub T,
pub T, pub T, pub T, pub T,
pub T, pub T, pub T, pub T);
}
pub type u32x4 = Simd4<u32>;
pub type u16x8 = Simd8<u16>;
pub type u8x16 = Simd16<u8>;
#[cfg_attr(feature = "clippy", allow(inline_always))]
impl<T> Simd4<T> {
#[inline(always)]
pub fn new(e0: T, e1: T, e2: T, e3: T) -> Simd4<T> {
Simd4(e0, e1, e2, e3)
}
}
unsafe impl<T: Safe> Safe for Simd4<T> {}
unsafe impl<T: Safe> Safe for Simd8<T> {}
unsafe impl<T: Safe> Safe for Simd16<T> {}